skip to main content
Menu
Original Article

Exploring of structural, electronic, and optical properties of transition metal doped C20 clusters

Authors

Abstract

In the current investigation, computational viewpoint of doped C20 nano-cage with Zn, Cu+, Ni2+, and Co3+ was described at B3LYP*/6-311G(d,p) level of theory in singlet spin state. Vibrational analysis was established retaining of the optimized nano-cage of the minimum potential energy curve. M-C bond lengths, electronic spatial extent (ESE), photoelectron spectrum (PES) and the results of molecular orbital analysis of the studied clusters were reported. QTAIM results were considered to exploration of metal-carbon bonds characters. NICS values were provided to illustration of aromaticity the clusters. Also, doping outcome on the linear and nonlinear optical properties the clusters was demonstrated.

Graphical Abstract

Keywords

References

1.           Prinzbach H., Weiler A., Landenberger P., Wahl F., Worth J., Scott L.T., Gelmont M.D., Olevano D., Issendorff B.V., (2000), Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature. 407: 60-63,doi 10.1038/35024037.

2.           Bylaska E.J., Taylor P.R., Kawai R., Weare J.H., (1996), LDA Predictions of C20 Isomerizations:  Neutral and Charged Species. J. Phys. Chem. A. 100: 6966-6972,doi 10.1021/jp9528323.

3.           Grossman J.C., Mitas L., Raghavachari K., (1995), Structure and Stability of Molecular Carbon: Importance of Electron Correlation. Phys. Rev. Lett. 750: 3870-3873,doi 10.1103/PhysRevLett.75.3870.

4.           .L.Martin J.M., El-Yazal J., Francois J., (1996), On the structure and vibrational frequencies of C20. Chem. Phys. Lett. . 248: 345-352,doi 10.1016/0009-2614(95)01334-2.

5.           Sokolova S., Luchow A., Anderson J.B., (2000), Energetics of carbon clusters C20 from all-electron quantum Monte Carlo calculations. Chem. Phys. Lett. . 323: 229-233,doi 10.1016/S0009-2614(00)00554-6.

6.           Taylor R., Bylaska E., Weare J.H., Kawai R., (1995), C20: fullerene, bowl or ring? New results from coupled-cluster calculations. Chem. Phys. Lett. 235: 558-563,doi 10.1016/0009-2614(95)00161-V.

7.           Wang Z., Day P., Pachte R., (1996), Ab initio study of C20 isomers: geometry and vibrational frequencies. Chem. Phys. Lett. 248: 121-126,doi 10.1016/0009-2614(95)01299-0.

8.           Zhanga C., Sun W., Caob Z., (2007), Most stable structure of fullerene[20] and its novel activity toward addition of alkene: A theoretical study. J. Chem. Physics. 126: 144306,doi 10.1063/1.2716642.

9.           Kassaee M.Z., Buazar F., Koohi M., (2010), Heteroatom impacts on structure, stability and aromaticity of XnC20−n fullerenes: A theoretical prediction. Journal of Molecular Structure: THEOCHEM. 940: 19-28,doi 10.1016/j.theochem.2009.10.002.

10.        Ghiasi R., Fashami M.Z., (2014), Tautomeric transformations and reactivity of isoindole and sila-indole: A computational study. Journal of Theoretical and Computational Chemistry. 13: 1450041-1-14,doi 10.1142/S0219633614500412.

11.        Alavi H., Ghiasi R., (2017), A theoretical study of solvent effect on the interaction of C20 and N2H2 J. Struc. Chem. 58: 30-37,doi 10.1134/S0022.

12.        Chen Z., Heine T., Jiao H., Hirsch A., Thiel W., Schleyer P.v.R., (2004), Theoretical Studies on the Smallest Fullerene: from Monomer to Oligomers and Solid States. Chem. Eur. J. . 10: 963-970,doi 10.1002/chem.200305538.

13.        Luo J., Peng L.M., Xue Z.Q., Wu J.L., (2004), Positive electron affinity of fullerenes: Its effect and origin. J. Chem. Phys. 120: 7998-8001,doi 10.1063/1.1691397.

14.        Ghanbari H., Cousins B.G., Seifalian A.M., (2011), A nanocage for nanomedicine: Polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun. 32: 1032–1046.

15.        Kazemi Z., Ghiasi R., Jamehbozorgi S., (2018), Analysis of the Interaction Between the C20 Cage and cis-PtCl2(NH3)2: A DFT Investigation of the Solvent Effect, Structures, Properties, and Topologies. Journal of Structural Chemistry. 59: 1044-1051,doi 10.1134/S0022476618050050.

16.        Ghiasi R., Rahimi M., Ahmadi R., (2020), Quantum-chemical investigation into the complexation of titanocene dichloride with C20 and M+@C20 (M+= Li, Na, K) cages. Journal of Structural chemistry. 61: 1681–1690,doi 10.1134/S0022476620110025.

17.        Ghiasi R., Sadeghi N., (2017), Evolution of the interaction between C20 cage and Cr(CO)5: A solvent effect, QTAIM and EDA investigation. Journal of Theoretical and Computational Chemistry. 16: 1750007,doi 10.1142/S0219633617500079.

18.        Alavi H., Ghiasi R., (2017), A theoretical study of the solvent effect on the interaction of C20 and N2H2. Journal of Structural Chemistry. 58: 30-37,doi 10.1134/S002247661701005X.

19.        Ghiasi R., Fashami M.Z., Hakimioun A.H., (2014), A density functional approach toward structural features and properties of C20N2X2 (X = H, F, Cl, Br, Me) molecules. Journal of Theoretical and Computational Chemistry. 13: 1450023,doi 10.1142/S0219633614500230.

20.        Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalman G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., T. Nakajima, Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., J. Normand, Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., J. Tomasi, Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.

21.        Parr R.G., Yang W., Density-Function Theory of Atoms and Molecules. Oxford University Press: Oxford, UK, 1989.

22.        Salomon O., Reiher M., A.Hess B., (2002), Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set. J. Chem. Phys. . 117: 4729-4737 doi 10.1063/1.1493179.

23.        Hay P.J., (1977), basis sets for molecular calculations - representation of 3D orbitals in transition-metal atoms. J. Chem. Phys. 66: 4377-4384,doi 10.1063/1.433731.

24.        Krishnan R., Binkley J.S., Seeger R., Pople J.A., (1980), self consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72: 650-654,doi 10.1063/1.438955.

25.        McLean A.D., Chandler G.S., (1980), Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys. 72: 5639-5648,doi 10.1063/1.438980.

26.        Wachters A.J.H., (1970), Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52: 1033-1036,doi 10.1063/1.1673095.

27.        Adamo C., Barone V., (1999), Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110: 6158-6169,doi 10.1063/1.478522.

28.        Lu T., Chen F., (2012), Quantitative molecular surface analysis module:. J. Mol. Graph. Model. 38: 314-323. doi 10.1016/j.jmgm.2012.07.004.

29.        Lu T., Chen F., (2012), Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comp. Chem. 33: 580-592,doi 10.1002/jcc.22885.

30.        Keleiman D.A., (1962), Nonlinear Dielectric Polarization in Optical Media. Phy. Rev. 126: 1977-1979,doi 10.1103/PhysRev.126.1977.

31.        Schleyer P.v.R., Maerker C., Dransfeld A., H.Jiao, Hommes N.J.R.v.E., (1996), Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. . 118: 6317- 6318,doi 10.1021/ja960582d.

32.        Cyranski M.K., Krygowski T.M., Wisiorowski M., Hommes N.J.R., Schleyer P.v.R., (1988), Angew. Chem., Int. Ed. . 37: 177-180.

33.        Mousa A.H., Polukeev A.V., Hansson J., Wendt O.F., (2020), Carboxylation of the Ni−Me Bond in an Electron-Rich Unsymmetrical PCN Pincer Nickel Complex. Organometallics. 39: 1553−1560,doi 10.1021/acs.organomet.9b00817.

34.        Pérez-Jiménez M., Campos J., Jover J., Álvarez S., Carmona E., (2022), Coordination of E−C Bonds (E = Zn, Mg, Al) and the Zn−H Bonds of (C5Me5)ZnH and (C5Me5)ZnZnH across a Quadruply Bonded Dimolybdenum Dihydride Complex. Organometallics. 41: 3225−3236,doi 10.1021/acs.organomet.2c00216.

35.        Shreiber S.T., Kaplan P.T., Hughes R.P., Vasiliu M., Dixon D.A., Cramer R.E., Vicic D.A., (2020), Syntheses, solution behavior, and computational bond length analyses of trifluoromethyl and perfluoroethyl cuprate salts. Journal of Fluorine Chemistry. 234: 109518,doi 10.1016/j.jfluchem.2020.109518.

36.        Spataru T., Birke R.L., (2006), Carbon-Cobalt Bond Distance and Bond Cleavage in One-Electron Reduced Methylcobalamin: A Failure of the Conventional DFT Method. J. Phys. Chem. A,. 110: 8599-8604,doi 10.1021/jp062741d.

37.        Ghiasi R., (2005), A computational study of the arsabenzenes: Structure, properties and aromaticity. Journal of Organometallic Chemistry. 690: 4761-4767,doi 10.1016/j.jorganchem.2005.07.069.

38.        Ghiasi R., (2005), The mono- and di-silanaphthalene: Structure, properties, and aromaticity. Journal of Molecular Structure: THEOCHEM. 718: 225-233,doi 10.1016/j.theochem.2004.11.038.

39.        Ghiasi R., (2008), Theoretical study of the properties of fluoroborthiin and fluoroboroxine. Journal of Molecular Structure: THEOCHEM. 853: 77-81,doi 10.1016/j.theochem.2007.12.007.

40.        Ghiasi R., (2008), Theoretical study of classical isomers tropylium, azatropylium, phosphatropylium, and arsatropylium cations: Structure, properties and aromaticity. Main Group Chemistry. 7: 147-154,doi 10.1080/10241220802436271.

41.        Ghiasi R., Monajjemi M., (2007), Theoretical study of borthiin and its derivatives: Structure and aromaticity. Journal of Sulfur Chemistry. 28: 505-511,doi 10.1080/17415990701516440.

42.        Ghiasi R., Monajjemi M., (2007), Theoretical study of interaction of alkaline earth metal with C4O42- and C4S42-: Structure, electronic properties and aromaticity. Journal of Sulfur Chemistry. 28: 537-546,doi 10.1080/17415990701561263.

43.        Ghiasi R., (2007), Theoretical study of Borazanaphthalene and its mono-Fluorinated derivatives: Structure and properties. Main Group Chemistry. 6: 43-51,doi 10.1080/10241220701697858.

44.        Ghiasi R., Monnajemi M., (2006), Theoretical studies on the structure and aromaticity of 1H-indene and mono-sila-1H-indene. Journal of the Korean Chemical Society. 50: 281-290,doi 10.5012/jkcs.2006.50.4.281.

45.        Ghiasi R., (2006), Theoretical studies on the structures, properties, and aromaticity of germatropylium cations. Main Group Chemistry. 5: 203-214,doi 10.1080/10241220701458384.

46.        Ghiasi R., (2006), Arsacyclopentadienyl anions: Structure, properties and aromaticity. Main Group Chemistry. 5: 153-161,doi 10.1080/10241220701414759.

47.        Ghiasi R., Monajjemi M., Mokarram E.E., Makkipour P., (2008), Theoretical studies on the structures, properties, and aromaticities of fluorinated arsabenzenes. Journal of Structural Chemistry. 49: 600-605,doi 10.1007/s10947-008-0083-7.

48.        Pasdar H., Ghiasi R., (2009), Effect of substitution on the structures, properties, and aromaticity of 1-H-boratabenzene anion. Main Group Chemistry. 8: 143-150,doi 10.1080/10241220902977653.

49.        Ebrahimi A.A., Ghiasi R., Foroutan-Nejad C., (2010), Topological characteristics of the Ring Critical Points and the aromaticity of groups IIIA to VIA hetero-benzenes. Journal of Molecular Structure: THEOCHEM. 941: 47-52,doi 10.1016/j.theochem.2009.10.038.

50.        Ghiasi R., Moghimi A., (2010), Theoretical study of the interactions between borthiin and fluorinated borthiins with difluorine. Phosphorus, Sulfur and Silicon and the Related Elements. 185: 1964-1971,doi 10.1080/10426500903403107.