skip to main content
Menu
Original Article

DFT analyses of diamond-assisted paclitaxel anticancer conjugations and evaluating their features regarding the nano-based drug delivery approach

Authors

Abstract

Conjugations of a diamond (Diam) nanoflake and the paclitaxel (PTX) anticancer were investigated by analyzing the structural and electronic specifications obtained by density functional theory (DFT) regarding the nano-based drug delivery approach. The results indicated the formation of two physically interacting PTX@Diam conjugations; C1 and C2 with the strength values of -9.96 and -25.28 kcal/mol, respectively. The analyses of featured properties indicated an organizing role of Diam nanoflake for the next behaviors of PTX drug especially in the C2 conjugation. The localizations of all molecular orbital patterns were found at the surface of Diam nanoflake in both of C1 and C2 indicating its dominant role for managing the electronic behaviors. Additionally, chemical potential (-4.14 eV) of PTX was found better in C2 with a so much likely chemical potential (-4.28 eV) to the isolated PTX substance. Hereby, an enhanced PTX@Diam conjugated system was propped by this work regarding the nano-based drug delivery developmental approach.

Graphical Abstract

Keywords

References

1.         Karreinen S., Paananen H., Kihlström L., Janhonen K., Huhtakangas M., Viita-Aho M., Tynkkynen L. K., (2023), Living through uncertainty: A qualitative study on leadership and resilience in primary healthcare during COVID-19. BMC Health Services Res. 23: 233-237. https://doi.org/10.1186/s12913-023-09223-y

2.         Eslami S., Hosseinzadeh Shakib N., Fooladfar Z., Nasrollahian S., Baghaei S., Mosaddad S.A., Motamedifar M., (2023), The role of periodontitis‐associated bacteria in Alzheimer's disease: A narrative review. J. Basic Microbiol. 63: 1059-1064. https://doi.org/10.1002/jobm.202300250

3.         Aldulaimi A. K. O., Azziz S. S. S. A., Bakri Y. M., Nafiah M. A., Awang K., Aowda S., Litaudon M., Hassan N. M., Naz H., Abbas P., Hashim, Y. Z. H., (2018), Alkaloids from Alphonsea Elliptica Barks and their biological activities. J. Global Pharma. Technol. 10: 270-275. http://irep.iium.edu.my/68590

4.         Dicuonzo G., Donofrio F., Fusco A., Shini M., (2023), Healthcare system: Moving forward with artificial intelligence. Technovation. 120: 102510. https://doi.org/10.1016/j.technovation.2022.102510

5.         Mosaddad S. A., Rasoolzade B., Namanloo R. A., Azarpira N., Dortaj H., (2022), Stem cells and common biomaterials in dentistry: A review study. J. Mater. Sci. 33: 55-61. https://doi.org/10.1007/s10856-022-06676-1

6.         Mohammed H. T., Alasedi K. K., Ruyid R., Hussein S. A., Jarallah A. L., Dahesh S. M. A., Sultan M. Q., Salman Z. N., Bashar B. S., Aldulaimi A. K. O., Obaid M. A., (2022), ZnO/Co3O4 nanocomposites: Novel preparation, characterization, and their performance toward removal of antibiotics from wastewater. J. Nanostruct. 12: 503-509. https://doi.org/10.22052/JNS.2022.03.003

7.         Yang Y., Wang S., Ma P., Jiang Y., Cheng K., Yu Y., Jiang N., Miao H., Tang Q., Liu F., Zha Y., (2023), Drug conjugate-based anticancer therapy-current status and perspectives. Cancer Lett. 552: 215969. https://doi.org/10.1016/j.canlet.2022.215969

8.         Nezamabadi M., Balali E., Qomi M., (2023), A sumanene-chitosan scaffold for the adsorption of niraparib anticancer: DFT insights into the drug delivery. Inorg. Chem. Commun. 155: 111098. https://doi.org/10.1016/j.inoche.2023.111098

9.         Liu W., Ma Z., Wang Y., Yang J., (2023), Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioact. Mater. 23: 274-278. https://doi.org/10.1016/j.bioactmat.2022.11.006

10.     Hosseini S. M. H., Naimi-Jamal M. R., Hassani M., (2022), Preparation and characterization of mebeverine hydrochloride niosomes as controlled release drug delivery system. Chem. Methodol. 6: 591-596. https://doi.org/10.22034/CHEMM.2022.337717.1482

11.     Jabar M. S., Al-Shammaree S. A. W., (2023), Cytotoxicity and anticancer effect of chitosan-Ag NPs-doxorubicin-folic acid conjugate on lungs cell line. Chem. Methodol. 7: 1-6. https://doi.org/10.22034/CHEMM.2023.359769.1604

12.     Manuel M., Jennifer A., (2023), A review on starch and cellulose-enhanced superabsorbent hydrogel. J. Chem. Rev. 5: 183-187. https://doi.org/10.22034/JCR.2023.382452.1209

13.     Naeimi Darestani M., Houshmand B., Mosaddad S. A., Talebi M., (2023), Assessing the surface modifications of contaminated sandblasted and acid-etched implants through diode lasers of different wavelengths: An in vitro study. Photobiomodul. Photomed. Laser Surg. 41: 201-207. https://doi.org/10.1089/photob.2023.0009

14.     Musa N., Sallau M., Oyewale A., Ali T., (2023), Bioactive compounds and antischistosomal activity of dolichos species: A review. J. Chem. Rev. 5: 416-420. https://doi.org/10.22034/JCR.2023.407571.1233

15.     Mosaddad S. A., Hussain A., Tebyaniyan, H., (2023), Green alternatives as antimicrobial agents in mitigating periodontal diseases: A narrative review. Microorgan. 11: 1269-1275. https://doi.org/10.3390/microorganisms11051269

16.     Saadh M. J., Mirzaei M., Dhiaa S. M., Hosseini L. R., Kushakova G., Da'i M., Salem-Bekhit, M. M., (2024), Density functional theory assessments of an iron-doped graphene platform towards the hydrea anticancer drug delivery. Diam. Relat. Mater. 141: 110683. https://doi.org/10.1016/j.diamond.2023.110683

17.     Flayyih A. O., Mahdi W. K., Abu Zaid Y. I. M., Musa F. H., (2022), Biosynthesis, characterization, and applications of bismuth oxide nanoparticles using aqueous extract of beta vulgaris. Chem. Methodol. 6: 620-626. https://doi.org/10.22034/CHEMM.2022.342124.1522

18.     Jasim S. A., Kzar H. H., Sivaraman R., Jweeg M. J., Zaidi M., Alkadir O. K. A., Safaa Fahim F., Aldulaim A. K. O., Kianfar E., (2022), Engineered nanomaterials, plants, plant toxicity and biotransformation: A review. Egypt. J. Chem. 65: 151-156. https://doi.org/10.21608/ejchem.2022.131166.5775

19.     Abdullaev S., Barakayev N. R., Abdullaeva B. S., Turdialiyev U., (2023), A novel model of a hydrogen production in micro reactor: Conversion reaction of methane with water vapor and catalytic. Int. J. Thermofluid. 20: 100510. https://doi.org/10.1016/j.ijft.2023.100510

20.     Salem-Bekhit M. M., Da'i M., Rakhmatullaeva M. M., Mirzaei M., Al Zahrani S., Alhabib N. A., (2023), The drug delivery of methimazole through the sensing function assessments of BeO fullerene-like particles: DFT study. Chem. Phys. Impact. 7: 100335. https://doi.org/10.1016/j.chphi.2023.100335

21.     Balali E., Sandi S., Sheikhi M., Shahab S., Kaviani S., (2022), DFT and TD-DFT study of adsorption behavior of Zejula drug on surface of the B12N12 nanocluster. Main Group Chem. 21: 405-411. https://doi.org/10.3233/MGC-210120

22.     Ezhilarasan D., Lakshmi T., Mallineni S. K., (2022), Nano-based targeted drug delivery for lung cancer: Therapeutic avenues and challenges. Nanomedicine. 17: 1855-1862. https://doi.org/10.2217/nnm-2021-0364

23.     Ansari M. J., Aldawsari M. F., Zafar A., Soltani A., Yasir M., Jahangir M. A., Taleuzzaman M., Erfani-Moghadam V., Daneshmandi L., Mahmoodi N. O., Yahyazadeh A., (2022), In vitro release and cytotoxicity study of encapsulated sulfasalazine within LTSP micellar/liposomal and TSP micellar/niosomal nano-formulations. Alexandria Eng. J. 61: 9749-9754. https://doi.org/10.1016/j.aej.2022.02.019

24.     Gholami A., Shakerzadeh E., Anota E. C., (2023), Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron. 232: 116295. https://doi.org/10.1016/j.poly.2023.116295

25.     Salem-Bekhit M. M., Al Zahrani S., Alhabib N. A., Maaliw III R. R., Da'i M., Mirzaei M., (2023), Metal-doped fullerenes as promising drug carriers of hydroxycarbamide anticancer: Insights from density functional theory. Chem. Phys. Impact. 7: 100347. https://doi.org/10.1016/j.chphi.2023.100347

26.     Prieto-Martínez F. D., López-López E., Juárez-Mercado K. E., Medina-Franco J. L., (2019), Computational drug design methods - current and future perspectives. In Silico Drug Des. 2019: 19-26. https://doi.org/10.1016/B978-0-12-816125-8.00002-X

27.     Attar Kar M. H., Yousefi M., (2022), Interaction of a conical carbon scaffold with the thio-substituted model of fluorouracil towards approaching the drug delivery purposes. Main Group Chem. 21: 725-731. https://doi.org/10.3233/MGC-210174

28.     Sadjadi M. S., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2) 2]; X= F (1), X= Cl (2). J. Mol. Struct. THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015

29.     Kumar N., Chamoli P., Misra M., Manoj M. K., Sharma A., (2022), Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale. 14: 3987-3993. https://doi.org/10.1039/D1NR07643D

30.     Althomali R. H., Jabbar H. S., Kareem A. T., Abdullaeva B., Abdullaev S. S., Alsalamy A., Hussien B. M., Balasim H. M., Mohammed Y., (2023), Various methods for the synthesis of NiTiO3 and ZnTiO3 nanomaterials and their optical, sensor and photocatalyst potentials: a review. Inorg. Chem. Commun. 158: 111493. https://doi.org/10.1016/j.inoche.2023.111493

31.     Chala G., (2023), Review on green synthesis of iron-based nanoparticles for environmental applications. J. Chem. Rev. 5: 1-7. https://doi.org/10.22034/jcr.2023.356745.1184

32.     Althomali R. H., Al-Hawary S. I. S., Gehlot A., Qasim M. T., Abdullaeva B., Sapaev I. B., Al-Kharsan I. H., Alsalamy A., (2023), A novel Pt-free counter electrode based on MoSe2 for cost effective dye-sensitized solar cells (DSSCs): Effect of Ni doping. J. Phys. Chem. Solid. 182:111597. https://doi.org/10.1016/j.jpcs.2023.111597

33.     Byakodi M., Shrikrishna N. S., Sharma R., Bhansali S., Mishra Y., Kaushik A., Gandhi S., (2022), Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosens. Bioelectro. X. 12: 100284. https://doi.org/10.1016/j.biosx.2022.100284

34.     Gupta N., Todi K., Narayan T., Malhotra B. D., (2022), Graphitic carbon nitride-based nanoplatforms for biosensors: Design strategies and applications. Mater Today Chem. 24: 100770. https://doi.org/10.1016/j.mtchem.2021.100770

35.     Al-Bahadili Z. R., Al-Hamdani A. A. S., Al-Zubaidi L. A., Rashid F. A., Ibrahim S. M., (2022), An evaluation of the activity of prepared zinc nano-particles with extract alfalfa plant in the treatments of peptidase and ions in water. Chem. Methodol. 6: 522-528. https://doi.org/10.22034/chemm.2022.336588.1470

36.     Taghva M., Mosaddad S. A., Ansarifard E., Sadeghi M., (2023), Could various angulated implant depths affect the positional accuracy of digital impressions? An in vitro study. J. Prosthodontics. 7: 1-6. https://doi.org/10.1111/jopr.13764

37.     Hosseini L. S. R., Bazargan A. M., Sharif F., Ahmadi, M., (2023), Promoting the electrical conductivity of polyimide/in-situ reduced graphene oxide nanocomposites by controlling sheet size. Prog. Org. Coat. 179: 107542. https://doi.org/10.1016/j.porgcoat.2023.107542

38.     Esmaeilzade R., Stainslavovich K. A., Jandaghian M. H., Hosseini L. S. R., Saleh L. H., Zarghampour, S., (2024), Correlation of structure, rheological, thermal, mechanical, and optical properties in Low Density Polyethylene/Linear Low Density Polyethylene blends in the presence of recycled Low Density Polyethylene and Linear Low Density Polyethylene. Polymer Eng. Sci. 2024: 1-7. https://doi.org/10.1002/pen.26614

39.     Shaw S., Shit G. C., Tripathi D., (2022), Impact of drug carrier shape, size, porosity and blood rheology on magnetic nanoparticle-based drug delivery in a microvessel. Colloids Surf. A. 639: 128370. https://doi.org/10.1016/j.colsurfa.2022.128370

40.     Saadh M. J., Mirzaei M., Abdullaeva B. S., Maaliw III R. R., Da'i M., Salem-Bekhit M. M., Akhavan-Sigari R., (2023), Explorations of structural and electronic features of an enhanced iron-doped boron nitride nanocage for adsorbing/sensing functions of the hydroxyurea anticancer drug delivery under density functional theory calculations. Phys. B. 415445. https://doi.org/10.1016/j.physb.2023.415445

41.     Das R., Dhar N., Bandyopadhyay A., Jana D., (2016), Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study. J. Phys. Chem. Solids. 99: 34-39. https://doi.org/10.1016/j.jpcs.2016.08.004

42.     Rivero P., Shelton W., Meunier V., (2016), Surface properties of hydrogenated diamond in the presence of adsorbates: A hybrid functional DFT study. Carbon. 110: 469-474. https://doi.org/10.1016/j.carbon.2016.09.050

43.     Alqahtani F. Y., Aleanizy F. S., El Tahir E., Alkahtani H. M., AlQuadeib B. T., (2019), Paclitaxel. Profiles Drug Subst. Excip. Relat. Methodol. 44: 205-211. https://doi.org/10.1016/bs.podrm.2018.11.001

44.     Zhao S., Tang Y., Wang R., Najafi M., (2022), Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis. 27: 647-652. https://doi.org/10.1007/s10495-022-01750-z

45.     Xiang X., Feng X., Lu S., Jiang B., Hao D., Pei Q., Xie Z., Jing X., (2022), Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration. 2: 20220008. https://doi.org/10.1002/EXP.20220008

46.     Yu D. L., Lou Z. P., Ma F. Y., Najafi M., (2022), The interactions of paclitaxel with tumour microenvironment. Int. Immunopharma. 105: 108555. https://doi.org/10.1016/j.intimp.2022.108555

47.     Hashemi M., Zandieh M. A., Talebi Y., Rahmanian P., Shafiee S. S., Nejad M. M., Babaei R., Sadi F. H., Rajabi R., Abkenar Z. O., Rezaei S., (2023), Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed. Pharma. 160: 114392. https://doi.org/10.1016/j.biopha.2023.114392

48.     González-Díaz S. N., Canel-Paredes A., Macías-Weinmann A., Vidal-Gutiérrez O., Villarreal-González R. V., (2023), Atopy, allergen sensitization and development of hypersensitivity reactions to paclitaxel. J. Oncol. Pharm. Pract. 29: 810-816. https://doi.org/10.1177/10781552221080415

49.     Pennypacker S. D., Fonseca M. M., Morgan J. W., Dougherty P. M., Cubillos-Ruiz J. R., Strowd R. E., Romero-Sandoval E. A., (2022), Methods and protocols for chemotherapy-induced peripheral neuropathy (CIPN) mouse models using paclitaxel. Methods Cell Biol. 168: 277-282. https://doi.org/10.1016/bs.mcb.2021.12.019

50.     Yang Q., Han E., Xu S., Xu Y., Gao J., (2022), Treatment of advanced ovarian cancer with carboplatin and paclitaxel in a patient undergoing hemodialysis: Case report and literature review. Hemodial. Int. 26: E31. https://doi.org/10.1111/hdi.13020

51.     Hertz D. L., Chen L., Henry N. L., Griggs J. J., Hayes D. F., Derstine B. A., Su G. L., Wang S. C., Pai M. P., (2022), Muscle mass affects paclitaxel systemic exposure and may inform personalized paclitaxel dosing. British J. Clin. Pharmacol. 88: 3222-3226. https://doi.org/10.1111/bcp.15244

52.     Chan J., Adderley H., Alameddine M., Armstrong A., Arundell D., Fox R., Harries M., Lim J., Salih Z., Tetlow C., Wong H., (2021), Permanent hair loss associated with taxane chemotherapy use in breast cancer: A retrospective survey at two tertiary UK cancer centres. Europ. J. Cancer Care. 30: e13395. https://doi.org/10.1111/ecc.13395

53.     Ying N., Liu S., Zhang M., Cheng J., Luo L., Jiang J., Shi G., Wu S., Ji J., Su H., Pan H., (2023), Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf. B. 228: 113419. https://doi.org/10.1016/j.colsurfb.2023.113419

54.     Chen Q., Xu S., Liu S., Wang Y., Liu G., (2022), Emerging nanomedicines of paclitaxel for cancer treatment. J. Control. Rel. 342: 280-287. https://doi.org/10.1016/j.jconrel.2022.01.010

55.     Jaradat E., Weaver E., Meziane A., Lamprou D. A., (2022), Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Int. J. Pharma. 628: 122320. https://doi.org/10.1016/j.ijpharm.2022.122320

56.     Raza F., Zafar H., Khan M. W., Ullah A., Khan A. U., Baseer A., Fareed R., Sohail M., (2022), Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater. Adv. 3: 2268-2273. https://doi.org/10.1039/D1MA00961C

57.     Zhao B., Gu Z., Zhang Y., Li Z., Cheng L., Li C., Hong Y., (2022), Starch-based carriers of paclitaxel: A systematic review of carriers, interactions, and mechanisms. Carbohyd. Polymers. 291: 119628-119632. https://doi.org/10.1016/j.carbpol.2022.119628

58.     Chai J. D., Head-Gordon M., (2008), Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10: 6615-6619. https://doi.org/10.1039/B810189B

59.     Rassolov V. A., Pople J. A., Ratner M. A., Windus T. L., (1998), 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109: 1223-1227. https://doi.org/10.1063/1.476673

60.     Gaussian 09, Revision D.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., (2016), Gaussian, Inc., Wallingford CT, https://www.gaussian.com.

61.     Alfryyan N., Sohail M., Rahman N., Alsalmi O. H., Ullah A., Khan A. A., Al-Buriahi M. S., Alrowaili Z. A., Abdullaeva B. S., (2023), First-principles calculations to investigate structural, electrical, elastic and optical characteristics of BWF3 (W= S and Si) fluoroperovskites. Results Phys. 52: 106812-106818. https://doi.org/10.1016/j.rinp.2023.106812

62.     Sidik M. N., Bakri Y. M., Azziz S. S. S. A., Aldulaimi A. K. O., Wong C. F., Ibrahim, M., (2022), In silico xanthine oxidase inhibitory activities of alkaloids isolated from Alphonsea sp. South Afric. J. Botany. 147: 820-825. https://doi.org/10.1016/j.sajb.2022.03.024

63.     Lu T., Chen F., (2012), Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33: 580-586. https://doi.org/10.1002/jcc.22885

64.     Popelier P. L., (2014), The QTAIM perspective of chemical bonding. Chem. Bond. 2014: 271-276. https://doi.org/10.1002/9783527664696.ch8

65.     Mennucci B., (2012), Polarizable continuum model. Wiley Interdisciplin. Rev. Comput. Mol. Sci. 2: 386-341. https://doi.org/10.1002/wcms.1086

66.     Gutowski M., Van Lenthe J. H., Verbeek J., Van Duijneveldt F. B., Chałasinski G., (1986), The basis set superposition error in correlated electronic structure calculations. Chem. Phys. Lett. 124: 370-376. https://doi.org/10.1016/0009-2614(86)85036-9

67.     Huang Y., Rong C., Zhang R., Liu S., (2017), Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J. Mol. Model. 23: 3-7. https://doi.org/10.1007/s00894-016-3175-x

68.     Saedi A., Mashinchian Moradi A., Kimiagar S., Panahi H. A., (2022), Photosensitization of fucoxanthin-graphene complexes: a computational approach. Main Group Chem. 21: 1065-1071. https://doi.org/10.3233/MGC-210188

69.     Da'i M., Mirzaei M., Toiserkani F., Mohealdeen S. M., Yasin Y., Salem-Bekhit M. M., Akhavan-Sigari R., (2023), Sensing the formaldehyde pollutant by an enhanced BNC18 fullerene: DFT outlook. Chem. Phys. Impact. 7: 100306-100311. https://doi.org/10.1016/j.chphi.2023.100306

70.     Toiserkani F., Mirzaei M., Alcan V., Harismah K., Salem-Bekhit M. M., (2023), A facile detection of ethanol by the Be/Mg/Ca-enhanced fullerenes: Insights from density functional theory. Chem. Phys. Impact. 7: 100318-100322. https://doi.org/10.1016/j.chphi.2023.100318

71.     Chemcraft - Version 1.8, build 682. Graphical software for visualization of quantum chemistry computations. Chemcraftprogaram, https://www.chemcraftprog.com.

72.     O'boyle N. M., Tenderholt A. L., Langner K. M., (2008), Cclib: A library for package independent computational chemistry algorithms. J. Comput. Chem. 29: 839-846. https://doi.org/10.1002/jcc.20823

73.     Peyab R., Hosseini S., Esrafili M. D., (2022), Al-and Ga-embedded boron nitride nanotubes as effective nanocarriers for delivery of rizatriptan. J. Mol. Liq. 361: 119662. https://doi.org/10.1016/j.molliq.2022.119662

74.     Nattagh F., Hosseini S., Esrafili M. D., (2021), Effects of B and N doping/codoping on the adsorption behavior of C60 fullerene towards aspirin: A DFT investigation. J. Mol. Liq. 342: 117459. https://doi.org/10.1016/j.molliq.2021.117459

75.     Ghazali F., Hosseini S., Ketabi S., (2023), DFT and molecular simulation study of gold clusters as effective drug delivery systems for 5-fluorouracil anticancer drug. J. Cluster Sci. 34: 1499-1505. https://doi.org/10.1007/s10876-022-02329-z

76.     Prieto-Martínez F. D., López-López E., Juárez-Mercado K. E., Medina-Franco J. L., (2019), Computational drug design methods - current and future perspectives. In Silico Drug Design. 2: 19-25. https://doi.org/10.1016/B978-0-12-816125-8.00002-X