skip to main content
Menu
Original Article

Bio-synthesis of Copper Oxide nanoparticles using beetle defensive gland extract: Exploring diverse applications

Authors

Abstract

The present study systematically investigates a direct method for synthesising copper oxide nanoparticles (CuONP) utilising the defensive gland secretion of the beetle Luprops tristis Fabricius (L. tristis) using a greener method under microwave irradiation. By employing the unique biological approach of utilising the insect L. tristis, we successfully characterised the CuONP abbreviated as LCuONP through various analytical techniques, including UV-Vis spectrometry, FTIR analysis, SEM, TEM, Zeta potential analysis, and crystalline structure by XRD analysis. These LCuONP display crystalline, irregular spherical shapes with a rugged surface and have an average size of 15 nm. Moreover, we demonstrate that LCuONP-coated electrodes can effectively sense hydrogen peroxide without the need for enzymes, rendering them valuable biosensors. Additionally, LCuONP show dose-dependent antimicrobial activity against Staphylococcus aureus and Klebsiella pneumoniae, indicating their potential as powerful bacterial inhibitors. Notably, LCuONP induce chromosomal abnormalities in Allium cepa root tips, with higher concentrations leading to decreased mitotic indices and increased chromosomal aberrations. Furthermore, our investigation reveals the antioxidative properties of LCuONP and establishes their dose-dependent cytotoxicity against DLA cells. Overall, this study highlights the diverse applications of biosynthesised CuONP, including antimicrobial and antioxidant functions, as well as their potential in biosensing and cancer therapy. CuONP hold significant utility across various fields of life. Thus, synthesising CuONP from insect secretions presents a novel approach, transforming a nuisance pest into a valuable resource in a more environmentally sustainable, economically feasible, and non-toxic synthesis method.

 

Graphical Abstract

Keywords

References

1.        Guajardo-Pacheco, M. J.; Morales-Sánchez, J.E.; González-Hernández, J.; Ruiz, F., (2010), Synthesis of Copper Nanoparticles Using Soybeans as a Chelant Agent. Materials Letters. 64: 1361–1364. http://doi:10.1016/j.matlet.2010.03.029.

2.        Motoyoshi, R.; Oku, T.; Suzuki, A.; Kikuchi, K.; Kikuchi, S.; Jeyadevan, B.; Cuya, J., (2010), Fabrication and Characterization of Cuprous Oxide: Fullerene Solar Cells. Synthetic Metals. 160: 1219–1222. doi:10.1016/j.synthmet.2010.03.012.

3.        Xi, Y.; Hu, C.; Gao, P.; Yang, R.; He, X.; Wang, X.; Wan, B., (2010),  Morphology and Phase Selective Synthesis of CuxO (X=1, 2) Nanostructures and Their Catalytic Degradation Activity. Materials Science and Engineering: B . 166: 113–117. doi:10.1016/j.mseb.2009.10.008.

4.    Ghane, M.; Sadeghi, B.; Jafari, A.R.; Paknejhad, A.R., (2010), Synthesis and Characterization of a Bi-Oxide Nanoparticle ZnO/CuO by Thermal Decomposition of Oxalate Precursor Method. Int. J. Nano Dimens. 1: 33–40, doi:10.7508/ijnd.2010.0x.003.

5.        Sadeghi, B.; Sadjadi, M. a. S.; Pourahmad, A., (2008),  Effects of Protective Agents (PVA & PVP) on the Formation of Silver Nanoparticles. Int. J. Nanoscience and Nanotechnol. 4: 3–12.

6.        Suleiman, M.; Mousa, M.; Hussein, A.; Hammouti, B.; Hadda, T.B.; Warad, I., (2013),  Copper (II)-Oxide Nanostructures: Synthesis, Characterizations and Their Applications-Review. J. Mater. Environmental Science. 4: 792–797.

7.        Sibhatu, A.K.; Weldegebrieal, G.K.; Sagadevan, S.; Tran, N.N.; Hessel, V., (2022),  Photocatalytic Activity of CuO Nanoparticles for Organic and Inorganic Pollutants Removal in Wastewater Remediation. Chemosphere. 300: 134623. doi:10.1016/j.chemosphere.2022.134623.

8.     Oruç, Ç.; Altındal, A., (2013),  Structural and Dielectric Properties of CuO Nanoparticles. Ceramics Int. 43: 10708–10714. doi:10.1016/j.ceramint.2017.05.006.

9.     ohani Bastami, T.; Bayat, M.; Paolesse, R.,(2022),  Naked-Eye Detection of Morphine by Au@Ag Nanoparticles-Based Colorimetric Chemosensors. Sensors. 22: 2072. doi:10.3390/s22052072.

10.     Rokni, M.; Rohani Bastami, T.; Meshkat, Z.; Reza Rahimi, H.; Zibaee, S.; Meshkat, M.; Fotouhi, F.; Serki, E.; Khoshakhlagh, M.; Dabirifar, Z.,( 2023),  Rapid and Sensitive Detection of SARS-CoV-2 Virus in Human Saliva Samples Using Glycan Based Nanozyme: A Clinical Study. Microchim Acta. 191: 36. doi:10.1007/s00604-023-06120-3.

11.  Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S., (2014),  CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications. Progress in Materials Science. 60: 208–337. doi:10.1016/j.pmatsci.2013.09.003.

12.  Devi, A.B.; Moirangthem, D.S.; Talukdar, N.C.; Devi, M.D.; Singh, N.R.; Luwang, M.N., (2014),  Novel Synthesis and Characterization of CuO Nanomaterials: Biological Applications. Chinese Chem. Lett. 25: 1615–1619. doi:10.1016/j.cclet.2014.07.014.

13.     Dagher, S.; Haik, Y.; Ayesh, A.I.; Tit, N., (2014), Synthesis and Optical Properties of Colloidal CuO Nanoparticles. Journal of Luminescence. 151: 149–154. doi:10.1016/j.jlumin.2014.02.015.

14.     Konar, S.; Kalita, H.; Puvvada, N.; Tantubay, S.; Mahto, M.Kr.; Biswas, S.; Pathak, A., (2016),  Shape-Dependent Catalytic Activity of CuO Nanostructures. Journal of Catalysis. 336: 11–22. doi:10.1016/j.jcat.2015.12.017.

15.     Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Venkatachalam, K.; Wang, M.-H., (2020), Folic Acid Functionalized Starch Encapsulated Green Synthesized Copper Oxide Nanoparticles for Targeted Drug Delivery in Breast Cancer Therapy. Int. J. Biolog. Macromolec. 164: 2073–2084. doi:10.1016/j.ijbiomac.2020.08.036.

16.     Perlman, O.; Weitz, I.S.; Azhari, H., (2015), Copper Oxide Nanoparticles as Contrast Agents for MRI and Ultrasound Dual-Modality Imaging. Phys. Med. Biol. 60: 5767. doi:10.1088/0031-9155/60/15/5767.

17.     da Silva, D.A.; De Luca, A.; Squitti, R.; Rongioletti, M.; Rossi, L.; Machado, C.M.L.; Cerchiaro, G.,(2022), Copper in Tumors and the Use of Copper-Based Compounds in Cancer Treatment. Journal of Inorganic Biochemistry. 226: 111634. doi:10.1016/j.jinorgbio.2021.111634.

18.     Sarfraz, S.; Javed, A.; Mughal, S.; Bashir, M.; Khan, A.; Parveen, S.; Khushi, A.; Khan, M.; Mughal, S.; Kamran, M., (2020), Copper Oxide Nanoparticles: Reactive Oxygen Species Generation and Biomedical Applications. Int. J. Computat. Theoretical Chem. 8: 40–46. doi:10.11648/j.ijctc.20200802.12.

19.     Keabadile, O.P.; Aremu, A.O.; Elugoke, S.E.; Fayemi, O.E., (2020),  Green and Traditional Synthesis of Copper Oxide Nanoparticles—Comparative Study. Nanomaterials. 10: 2502. doi:10.3390/nano10122502.

20.  Katwal, R.; Kaur, H.; Sharma, G.; Naushad, Mu.; Pathania, D., (2015),  Electrochemical Synthesized Copper Oxide Nanoparticles for Enhanced Photocatalytic and Antimicrobial Activity. J. Indus. Eng. Chem. 31: 173–184. doi:10.1016/j.jiec.2015.06.021.

21.    Khashan, K.S.; Sulaiman, G.M.; Abdulameer, F.A., (2016), Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid. Arab. J. Sci. Eng. 41: 301–310. doi:10.1007/s13369-015-1733-7.

22.     Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S., (2015), Characterization of Copper Oxide Nanoparticles Fabricated by the Sol–Gel Method. J. Electron. Mater. 44: 3704–3709. doi:10.1007/s11664-015-3867-5.

23.  Ananth, A.; Dharaneedharan, S.; Heo, M.-S.; Mok, Y.S., (2015), Copper Oxide Nanomaterials: Synthesis, Characterization and Structure-Specific Antibacterial Performance. Chem. Eng. J. 262: 179–188. doi:10.1016/j.cej.2014.09.083.

24.   Yang, C.; Xiao, F.; Wang, J.; Su, X., ( 2014), Synthesis and Microwave Modification of CuO Nanoparticles: Crystallinity and Morphological Variations, Catalysis, and Gas Sensing. J. Colloid and Interf. Sci. 435: 34–42. doi:10.1016/j.jcis.2014.08.044.

25.   Rabiee, N.; Bagherzadeh, M.; Kiani, M.; Ghadiri, A.M.; Etessamifar, F.; Jaberizadeh, A.H.; Shakeri, A., ( 2020),  Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications. Int. J. Nanomed. 15: 3983–3999. doi:10.2147/IJN.S255398.

26.     Letchumanan, D.; Sok, S.P.M.; Ibrahim, S.; Nagoor, N.H.; Arshad, N.M., ( 2021), Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules. 11: 564. doi:10.3390/biom11040564.

27.     Bukhari, S. I.; Hamed, M. M.; Al-Agamy, M. H.; Gazwi, H. S. S.; Radwan, H. H.; Youssif, A. M., (2021), Biosynthesis of Copper Oxide Nanoparticles Using Streptomyces MHM38 and Its Biological Applications. J. Nanomater. 2021: e6693302, doi:10.1155/2021/6693302.

28.     Sabira, O.; Vignesh, A.R.; Ajaykumar, A.P.; Varma, S.R.; Jayaraj, K.N.; Sebastin, M.; Nikhila, K.; Babu, A.; Rasheed, V.A.; Binitha, V.S.; ( 2022), The Chemical Composition and Antimitotic, Antioxidant, Antibacterial and Cytotoxic Properties of the Defensive Gland Extract of the Beetle, Luprops Tristis Fabricius. Molecules. 27: 7476. doi:10.3390/molecules27217476.

29.     Ajaykumar, A. P.; Sabira, O.; Sebastian, M.; Varma, S. R.; Roy, K. B.; Binitha, V. S.; Rasheed, V. A.; Jayaraj, K. N.; Vignesh, A. R.,(2023), A Novel Approach for the Biosynthesis of Silver Nanoparticles Using the Defensive Gland Extracts of the Beetle, Luprops Tristis Fabricius. Sci. Rep. 13: 10186. doi:10.1038/s41598-023-37175-0.

30.     Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Ullah Khan, A., ( 2021),  A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorg. Chem. Communic. 123: 108369. doi:10.1016/j.inoche.2020.108369.

31.     Wang, W.; Tang, Q.; Yu, T.; Li, X.; Gao, Y.; Li, J.; Liu, Y.; Rong, L.; Wang, Z.; Sun, H.; (2017), Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity. ACS. Appl. Mater. Interf. 9: 3376–3387. doi:10.1021/acsami.6b13911.

32.     Chakraborty, N.; Banerjee, J.; Chakraborty, P.; Banerjee, A.; Chanda, S.; Ray, K.; Acharya, K.; Sarkar, J., (2022), Green Synthesis of Copper/Copper Oxide Nanoparticles and Their Applications: A Review. Green Chem. Lett. Rev. 15: 187–215. doi:10.1080/17518253.2022.2025916.

33.     Ross, A. C.; Caballero, B.; Cousins, R. J.; Tucker, K. L., (2014), Modern Nutrition in Health and Disease; Jones & Bartlett Learning, 11; ISBN 978-1-284-22031-5.

34.     Ingle, A. P.; Duran, N.; Rai, M., (2014), Bioactivity, Mechanism of Action, and Cytotoxicity of Copper-Based Nanoparticles: A Review. Appl. Microbiol. Biotechnol. 98: 1001–1009. doi:10.1007/s00253-013-5422-8.

35.     Sabu, T. K.; Nirdev, P. M.; Aswathi, P., ( 2014), The Reproductive Performance of the Mupli Beetle, Luprops Tristis , in Relation to Leaf Age of the Para Rubber Tree, Hevea Brasiliensis. J. Insect. Sci. 14: 12-17. doi:10.1093/jis/14.1.12.

 36.     Gnanavel, V.; Palanichamy, V.; Roopan, S.M., (2017), Biosynthesis and Characterization of Copper Oxide Nanoparticles and Its Anticancer  Activity on Human Colon Cancer Cell Lines (HCT-116). J. Photochem  Photobiol. B: Biology. 171: 133–138. doi:10.1016/j.jphotobiol.2017.05.001.

37.     Sharma, J. K.; Akhtar, M. S.; Ameen, S.; Srivastava, P.; Singh, G., (2015), Green Synthesis of CuO Nanoparticles with Leaf Extract of Calotropis Gigantea and Its Dye-Sensitized Solar Cells Applications. J. Alloys and Comp. 632: 321–325. doi:10.1016/j.jallcom.2015.01.172.

38.     Nasrollahzadeh, M.; Maham, M.; Mohammad Sajadi, S., (2015), Green Synthesis of CuO Nanoparticles by Aqueous Extract of Gundelia Tournefortii and Evaluation of Their Catalytic Activity for the Synthesis of N-Monosubstituted Ureas and Reduction of 4-Nitrophenol. J. Colloid and Interf. Sci. 455: 245–253. doi:10.1016/j.jcis.2015.05.045.

39.     Lin, L.; Qiu, P.; Cao, X.; Jin, L., (2008), Colloidal Silver Nanoparticles Modified Electrode and Its Application to the Electroanalysis of Cytochrome c. Electrochimica Acta. 53: 5368–5372. doi:10.1016/j.electacta.2008.02.080.

40.     Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V., (2013), Origanum Vulgare Mediated Biosynthesis of Silver Nanoparticles for Its Antibacterial and Anticancer Activity. Colloids and Surfaces B: Biointerfaces. 108: 80–84. doi:10.1016/j.colsurfb.2013.02.033.

41.     Chand Mali, S.; Raj, S.; Trivedi, R., (2019), Biosynthesis of Copper Oxide Nanoparticles Using Enicostemma Axillare (Lam.) Leaf Extract. Biochemistry and Biophysics Reports, 20: 100699. doi:10.1016/j.bbrep.2019.100699.

42.     Nabila, M.I.; Kannabiran, K., (2018), Biosynthesis, Characterization and Antibacterial Activity of Copper Oxide Nanoparticles (CuO NPs) from Actinomycetes. Biocatalysis and Agricultural Biotechnology. 15: 56–62. doi:10.1016/j.bcab.2018.05.011.

43.     Karyakin, A.A.; Karyakina, E.E.; Gorton, L., (2000) Amperometric Biosensor for Glutamate Using Prussian Blue-Based “Artificial Peroxidase” as a Transducer for Hydrogen Peroxide. Anal. Chem. 72: 1720–1723. doi:10.1021/ac990801o.

44.     Ping, J.; Mao, X.; Fan, K.; Li, D.; Ru, S.; Wu, J.; Ying, Y., (2010), A Prussian Blue-Based Amperometric Sensor for the Determination of Hydrogen Peroxide Residues in Milk. Ionics. 16: 523–527. doi:10.1007/s11581-010-0418-1.

45.     Ricci, F.; Palleschi, G., (2005), Sensor and Biosensor Preparation, Optimisation and Applications of Prussian Blue Modified Electrodes. Biosensors and Bioelectronics. 21: 389–407. doi:10.1016/j.bios.2004.12.001.

46.     Amini, N.; Rashidzadeh, B.; Amanollahi, N.; Maleki, A.; Yang, J.-K.; Lee, S.-M., (2021),  Application of an Electrochemical Sensor Using Copper Oxide Nanoparticles/Polyalizarin Yellow R Nanocomposite for Hydrogen Peroxide. Environ. Sci. Pollut. Res. 28: 38809–38816. doi:10.1007/s11356-021-13299-6.

47.     Haiyan Song., (2015), A Novel Electrochemical Sensor Based on the Copper-Doped Copper Oxide Nano-Particles for the Analysis of Hydrogen Peroxide. Colloids and Surfaces A: Physicochem. and Eng. Aspects. 465: 153–158. doi:10.1016/j.colsurfa.2014.10.047.

48.     Trujillo, R. M.; Barraza, D. E.; Zamora, M. L.; Cattani-Scholz, A.; Madrid, R. E., (2021),  Nanostructures in Hydrogen Peroxide Sensing. Sensors. 21: 2204. doi:10.3390/s21062204.

49.     Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H., (2015), Green Synthesis of CuO Nanoparticles Using Gloriosa Superba L. Extract and Their Antibacterial Activity. J. Taibah Univ. Science. 9: 7–12. doi:10.1016/j.jtusci.2014.04.006.

50.     Karlsson, H.L.; Cronholm, P.; Hedberg, Y.; Tornberg, M.; De Battice, L.; Svedhem, S.; Wallinder, I.O., (2013), Cell Membrane Damage and Protein Interaction Induced by Copper Containing Nanoparticles—Importance of the Metal Release Process. Toxicology. 313: 59–69. doi:10.1016/j.tox.2013.07.012.

51.     Morsy, E.A.; Hussien, A.M.; Ibrahim, M.A.; Farroh, K.Y.; Hassanen, E.I., (2021), Cytotoxicity and Genotoxicity of Copper Oxide Nanoparticles in Chickens. Biol. Trace. Elem. Res. 199: 4731–4745. doi:10.1007/s12011-021-02595-4.

52.     Wang, L.; Hu, C.; Shao, L., (2017), The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 12: 1227–1249. doi:10.2147/IJN.S121956.

53.     Ajaykumar, A. P.; Sabira, O.; Binitha, V. S.; Varma, S. R.; Mathew, A.; Jayaraj, K. N.; Janish, P. A.; Zeena, K. V.; Sheena, P.; Venugopal, V., (2023),  Bio-Fabricated Silver Nanoparticles from the Leaf Extract of the Poisonous Plant, Holigarna Arnottiana: Assessment of Antimicrobial, Antimitotic, Anticancer, and Radical-Scavenging Properties. Pharmaceutics. 15: 2468. doi:10.3390/pharmaceutics15102468.

54.     Ajaykumar, A. P.; Sabira, O.; Sebastian, M.; Varma, S. R.; Roy, K. B.; Binitha, V. S.; Rasheed, V. A.; Jayaraj, K. N.; Vignesh, A. R., (2023), A Novel Approach for the Biosynthesis of Silver Nanoparticles Using the Defensive Gland Extracts of the Beetle, Luprops Tristis Fabricius. Sci. Rep. 13: 10186. doi:10.1038/s41598-023-37175-0.

55.     Ajaykumar, A.; Nikhila, K.; Sabira, O.; Narayanan Jayaraj, K.; Rama Varma, S.; A. Rasheed, V.; S. Binitha, V.; Sreeja, K.; M. Ramakrishnan, R.; Babu, A., (2024),  A Bio-Inspired Approach for the Synthesis of Few-Layer Graphene Using Beetle Defensive Gland Extract. RSC Adv. 14: 5729–5739. doi:10.1039/D3RA08733F.

56.     Mathew, A., (2022), Microwave-Assisted Greener Synthesis of Silver Nanoparticles Using Entada Rheedii Leaf Extract and Investigation of Its Anticancer and Antimicrobial Properties. Int. J. Nano Dimens. 13: 329-334. https://doi.org/10.22034/ijnd.2022.1952713.2126

57.    Ajaykumar, A. P.; Mathew, A.; Chandni, A. P.; Varma, S. R.; Jayaraj, K. N.; Sabira, O.; Rasheed, V. A.; Binitha, V. S.; Swaminathan, T. R.; Basheer, V. S., (2023),  Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria Narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics. 12: 564. doi:10.3390/antibiotics12030564.

58.     Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E., (2012), Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small. 8: 3326–3337. doi:10.1002/smll.201200772.

59.     Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Ullah Khan, A., (2021),  A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorg. Chem. Communic. 123: 108369. doi:10.1016/j.inoche.2020.108369.

60.     Sutradhar, P.; Saha, M.; Maiti, D., (2014), Microwave Synthesis of Copper Oxide Nanoparticles Using Tea Leaf and Coffee Powder Extracts and Its Antibacterial Activity. J. Nanostruct. Chem. 4: 86-91. doi:10.1007/s40097-014-0086-1.

61.     Fernández, J.; Pérez-Álvarez, J.A.; Fernández-López, J.A., (1997),  Thiobarbituric Acid Test for Monitoring Lipid Oxidation in Meat. Food Chem. 59: 345–353. doi:10.1016/S0308-8146(96)00114-8.

62.     Frankel, E. N., (1993), In Search of Better Methods to Evaluate Natural Antioxidants and Oxidative Stability in Food Lipids. Trends in Food Sci. Technol. 4: 220–225. doi:10.1016/0924-2244(93)90155-4.

63.     Davies, K. J., (1987), Protein Damage and Degradation by Oxygen Radicals. I. General Aspects. J. Biolog. Chem. 262: 9895–9901. doi:10.1016/S0021-9258(18)48018-0.

64.     Gutteridge, J. M. C.; Rowley, D. A.; Halliwell, B., (1981), Superoxide-Dependent Formation of Hydroxyl Radicals in the Presence of Iron Salts. Detection of ‘Free’ Iron in Biological Systems by Using Bleomycin-Dependent Degradation of DNA. Biochem. J. 199: 263–265. doi:10.1042/bj1990263.

65.     Brand-Williams, W.; Cuvelier, M.E.; Berset, C., (1995), Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Sci. Technol. 28: 25–30. doi:10.1016/S0023-6438(95)80008-5.

66.     Dobrucka, R., (2018), Antioxidant and Catalytic Activity of Biosynthesized CuO Nanoparticles Using Extract of Galeopsidis Herba. J. Inorg. Organomet. Polym. 28: 812–819. doi:10.1007/s10904-017-0750-2.

67.     S. Jadhav, M.; Kulkarni, S.; Raikar, P.; A. Barretto, D.; Kumar Vootla, S.; S. Raikar, U., (2018), Green Biosynthesis of CuO & Ag–CuO Nanoparticles from Malus Domestica Leaf Extract and Evaluation of Antibacterial, Antioxidant and DNA Cleavage Activities. New J. Chem. 42: 204–213. doi:10.1039/C7NJ02977B.

68.     Nagaonkar, D.; Shende, S.; Rai, M., (2015), Biosynthesis of Copper Nanoparticles and Its Effect on Actively Dividing Cells of Mitosis in Allium Cepa. Biotechnol. Prog. 31: 557–565. doi:10.1002/btpr.2040.

69.     Ahmed, B.; Shahid, M.; Khan, M.S.; Musarrat, J., (2018), Chromosomal Aberrations, Cell Suppression and Oxidative Stress Generation Induced by Metal Oxide Nanoparticles in Onion (Allium Cepa) Bulb†. Metallomics. 10: 1315–1327. doi:10.1039/c8mt00093j.

70.     Nagajyothi, P. C.; Muthuraman, P.; Sreekanth, T. V. M.; Kim, D. H.; Shim, J., (2017),  Green Synthesis: In-Vitro Anticancer Activity of Copper Oxide Nanoparticles against Human Cervical Carcinoma Cells. Arab. J. Chem. 10: 215–225. doi:10.1016/j.arabjc.2016.01.011.

71.     Pramanik, A.; Datta, A.K.; Das, D.; Kumbhakar, D.V.; Ghosh, B.; Mandal, A.; Gupta, S.; Saha, A.; Sengupta, S., (2018),  Assessment of Nanotoxicity (Cadmium Sulphide and Copper Oxide) Using Cytogenetical Parameters in Coriandrum Sativum L. (Apiaceae). Cytol. Genet. 52: 299–308. doi:10.3103/S0095452718040084.

72.     Bharathi, D.; Ranjithkumar, R.; Chandarshekar, B.; Bhuvaneshwari, V., (2019),  Bio-Inspired Synthesis of Chitosan/Copper Oxide Nanocomposite Using Rutin and Their Anti-Proliferative Activity in Human Lung Cancer Cells. Int. J. Biol. Macromol. 141: 476–483. doi:10.1016/j.ijbiomac.2019.08.235.

73.     Siddiqui, M.A.; Alhadlaq, H.A.; Ahmad, J.; Al-Khedhairy, A.A.; Musarrat, J.; Ahamed, M., ( 2013), Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells. PLOS ONE. 8: e69534. doi:10.1371/journal.pone.0069534.

74.     Nagajyothi, P. C.; Muthuraman, P.; Sreekanth, T. V. M.; Kim, D. H.; Shim, J., (2017), Green Synthesis: In-Vitro Anticancer Activity of Copper Oxide Nanoparticles against Human Cervical Carcinoma Cells. Arab. J. Chem. 10: 215–225. doi:10.1016/j.arabjc.2016.01.011.

75.     Kalaiarasi, A.; Sankar, R.; Anusha, C.; Saravanan, K.; Aarthy, K.; Karthic, S.; Mathuram, T. lemuel; Ravikumar, V., (2018),  Copper Oxide Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells by Inhibition of Histone Deacetylase. Biotechnol. Lett. 40: 249–256. doi:10.1007/s10529-017-2463-6.

76.     Yugandhar, P.; Vasavi, T.; Uma Maheswari Devi, P.; Savithramma, N., (2017),  Bioinspired Green Synthesis of Copper Oxide Nanoparticles from Syzygium Alternifolium (Wt.) Walp: Characterization and Evaluation of Its Synergistic Antimicrobial and Anticancer Activity. Appl. Nanosci. 7: 417–427. doi:10.1007/s13204-017-0584-9.

77.     Saravanakumar, K.; Shanmugam, S.; Varukattu, N.B.; MubarakAli, D.; Kathiresan, K.; Wang, M.-H., (2019), Biosynthesis and Characterization of Copper Oxide Nanoparticles from Indigenous Fungi and Its Effect of Photothermolysis on Human Lung Carcinoma. J. Photochem. Photobiol. B: Biol. 190: 103–109. doi:10.1016/j.jphotobiol.2018.11.017.

78.     Kouhkan, M.; Ahangar, P.; Babaganjeh, L. A.; Allahyari-Devin, M., (2020), Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus Casei Subsp. Casei and Its Anticancer and Antibacterial Activities. Current Nanosc. 16: 101–111. doi:10.2174/1573413715666190318155801.

79.     Bhattacharya, P.; Swarnakar, S.; Ghosh, S.; Majumdar, S.; Banerjee, S., (2019), Disinfection of Drinking Water via Algae Mediated Green Synthesized Copper Oxide Nanoparticles and Its Toxicity Evaluation. J. Environmen. Chem. Eng. 7: 102867. doi:10.1016/j.jece.2018.102867.

80.     RAMASWAMY, S. V. P.; NARENDHRAN, S.; SIVARAJ, R., (2016),  Potentiating Effect of Ecofriendly Synthesis of Copper Oxide Nanoparticles Using Brown Alga: Antimicrobial and Anticancer Activities. Bull. Mater. Sci. 39: 361–364. doi:10.1007/s12034-016-1173-3.

81.     Shende, S.; Ingle, A. P.; Gade, A.; Rai, M., (2015), Green Synthesis of Copper Nanoparticles by Citrus Medica Linn. (Idilimbu) Juice and Its Antimicrobial Activity. World J. Microbiol. Biotechnol. 31: 865–873. doi:10.1007/s11274-015-1840-3.

82.     El-Batal, A.I.; El-Sayyad, G.S.; Mosallam, F.M.; Fathy, R.M., (2020),  Penicillium Chrysogenum-Mediated Mycogenic Synthesis of Copper Oxide Nanoparticles Using Gamma Rays for In Vitro Antimicrobial Activity Against Some Plant Pathogens. J. Clust. Sci. 31: 79–90. doi:10.1007/s10876-019-01619-3.

83.     Hassan, S.E.-D.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gamal, M.S., (2019),  Endophytic Actinomycetes Streptomyces Spp Mediated Biosynthesis of Copper Oxide Nanoparticles as a Promising Tool for Biotechnological Applications. J. Biol. Inorg. Chem. 24: 377–393. doi:10.1007/s00775-019-01654-5.

84.     Angeline Mary, A.P.; Thaminum Ansari, A.; Subramanian, R., (2019), Sugarcane Juice Mediated Synthesis of Copper Oxide Nanoparticles, Characterization and Their Antibacterial Activity. J. King Saud Univ. Sci. 31: 1103–1114. doi:10.1016/j.jksus.2019.03.003.

85.     Rajesh, K. M.; Ajitha, B.; Reddy, Y. A. K.; Suneetha, Y.; Reddy, P. S., (2018), Assisted Green Synthesis of Copper Nanoparticles Using Syzygium Aromaticum Bud Extract: Physical, Optical and Antimicrobial Properties. Optik. 154: 593–600. doi:10.1016/j.ijleo.2017.10.074.

86.     Vaidehi, D.; Bhuvaneshwari, V.; Bharathi, D.; Sheetal, B. P., (2018), Antibacterial and Photocatalytic Activity of Copper Oxide Nanoparticles Synthesized Using Solanum Lycopersicum Leaf Extract. Mater. Res. Express. 5: 085403. doi:10.1088/2053-1591/aad426.

87.     Eltarahony, M.; Zaki, S.; Abd-El-Haleem, D., (2018),  Concurrent Synthesis of Zero- and One-Dimensional, Spherical, Rod-, Needle-, and Wire-Shaped CuO Nanoparticles by Proteus Mirabilis 10B. J. Nanomater. 2018: e1849616. doi:10.1155/2018/1849616.

88.     Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B., (2014),  Biosynthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanoparticles (CONPs) Produced Using Brown Alga Extract (Bifurcaria Bifurcata). Appl. Nanosci. 4: 571–576. doi:10.1007/s13204-013-0233-x.

89.     Kumar, P. P. N. V.; Shameem, U.; Kollu, P.; Kalyani, R. L.; Pammi, S. V. N., (2015),  Green Synthesis of Copper Oxide Nanoparticles Using Aloe Vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens. Bio. Nano Sci. 5: 135–139. doi:10.1007/s12668-015-0171-z