10.57647/ijm2c.2026.160106

An efficient numerical method for solving first order pantograph equations via shifted Muntz orthogonal functions

  1. Department of Mathematics, Isf. C., Islamic Azad University, Isfahan, Iran

Received: 12-07-2025

Revised: 27-09-2025

Accepted: 01-10-2025

Published in Issue 31-03-2026

Published Online: 02-10-2025

How to Cite

Kasmaei Najaf Abadi, H., Tavassoli Kajani, M., & Allame, M. (2026). An efficient numerical method for solving first order pantograph equations via shifted Muntz orthogonal functions. International Journal of Mathematical Modelling & Computations. https://doi.org/10.57647/ijm2c.2026.160106

Abstract

Pantograph equations are considered as a special type of delay differential equations with proportional delay and have numerous applications. This paper introduces a collocation method for solving first-order pantograph equations using shifted Muntz (SM) orthogonal functions. Unlike classical polynomials or Muntz-Legendre bases (e.g., [2]), SM functions incorporate logarithmic terms and exhibit real, simple roots in (0,1). Leveraging these roots as collocation points within a domain decomposition framework, we achieve high-precision solutions-particularly advantageous for inherently non-polynomial pantograph solutions. We derive rigorous error estimates, establish method stability, and demonstrate significant accuracy gains over existing techniques. Numerical experiments confirm the method’s efficacy, underscoring the superior approximation capability of SM functions for pantograph-type problems. All computations in this study were performed using Maple 2021 software. The codes were executed on a PC equipped with an Intel® CoreTM i5-10210U processor (1.60 GHz ) and 8 GB DDR4 RAM running Windows 10. 

Keywords

  • Pantograph equation,
  • Shifted Muntz orthogonal functions,
  • Collocation,
  • Stability

References

  1. G.V. Milovanovic, Muntz orthogonal polynomials and their numerical evaluation, in Applications and Computation of Orthogonal Polynomials, Birkhauser, Basel, (1999), 179–194.
  2. M. Tavassoli Kajani, Numerical solution of fractional pantograph equations via Muntz–Legendre polynomials, , Math. Sci., 18 (2024), 387–395. https://doi.org/10.1007/s40096-022-00507-8.
  3. M. Maleki, M. Tavassoli Kajani, Numerical approximations for Volterra’s population growth model with fractional order via a multi–domain pseudospectral method, Appl. Math. Model. 39 (2015) 4300–4308.
  4. D. Li, C. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simulation 172 (2020) 244–257.
  5. E. Zeynal, E. Babolian, T. Damercheli, A Direct Method For Solving Linear Delay Differential Equations, International Journal of Industrial Mathematics, Vol. 12 (2020), 10 pages.
  6. A. Ghasempour, Y. Ordokhani, S. Sabermahani, Numerical solution of fractional pantograph differential equations via Lucas polynomials, 16th Seminar on Differential Equations and Dynamical Systems, University of Tabriz (2022).
  7. L. Xie, C. Zhou, S. Xu, A new computational approach for the solutions of generalized pantograph delay differential equations, Comp. Appl. Math. 37 (2018) 1756–1783.
  8. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer, Berlin Heidelberg New York (2006).
  9. M. Bahmanpour, M. Tavassoli Kajani, M. Maleki, Solving Fredholm integral equations of the first kind using Muntz wavelets, Appl. Numer. Math. 143 (2019) 159–171.
  10. S. Sedaghat, Y. Ordokhani, M. Dehghan, Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 4815–4830.
  11. O.K. Kurkcu, E. Aslan, M. Sezer, An inventive numerical method for solving the most general form of integro–differential equations with functional delays and characteristic behavior of orthoexponential residual function, Comp. Appl. Math. 38 (2019).
  12. L. Torelli, Stability of numerical methods for delay differential equations, J. Comput. Appl. Math. 25 (1) (1989) 15–26.
  13. S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials, Comput. Math. Appl. 62 (2011) 918–929.
  14. P. Borwein, T. Erdelyi, J. Zhang, Muntz systems and orthogonal Muntz–Legendre polynomials, Trans. Amer. Math. Soc. 342 (2) (1994) 523–542.
  15. M. Ghasemi, E. Babolian, M. Tavassoli Kajani, Numerical solution of linear Fredholm integral equations using sine–cosine wavelets, Int. J. Comput. Math. 84 (7) (2007) 979–987.
  16. E. Gokmen, B. Gurbuz, M. Sezer, A numerical technique for solving functional integro–differential equations having variable bounds, Comp. Appl. Math. 37 (2018) 5609–5623.
  17. E. Taghizadeh, M. Matinfar, Modified numerical approaches for a class of Volterra integral equations with proportional delays, Comp. Appl. Math. 38 (2019).
  18. K. Maleknejad, J. Rashidini, T. Eftekhari, Numerical solutions of distributed order fractional differential equations in the time domain using the Muntz Legendre wavelets approach, Numer. Meth. Part. Dif. Equ. 37 (2021) 707–731.
  19. F. Mohammadi, Numerical solution of systems of fractional delay differential equations using a new kind of wavelet basis, Comp. Appl. Math. 37 (2018) 4122–4144.
  20. P. Rahimkhani, Y. Ordokhani, E. Babolian, Muntz–Legendre wavelet operational matrix of fractional order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor. 20 (2018) 1283–1305.
  21. J. R. Ockendon, A. B. Taylor, The Dynamics of a Current Collection System for an Electric Locomotive, Proceedings of the Royal Society of London A. 322 (1971) 447–468.
  22. H. Jafari, M. Mahmoudi, M. H. Noori Skandari, A new numerical method to solve pantograph delay differential equations with convergence analysis, Advances in Difference Equations. 129 (2021) 1–12.
  23. D. S. Li, M. Z. Liu, Exact solution properties of a multi pantograph delay differential equation, J. Harbin Inst. Technol. 32 (2000) 1–3.
  24. M. M. Alsuyuti, E. H. Doha, S. S. Ezz–Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi–order fractional pantograph equations, J. Comput. Appl. Math. 384 (2021) 113–157.
  25. E. Yusufoglu, An efficient algorithm for solving generalized pantograph equations with linear functional argument, Appl. Math. Comput. 217 (2010) 3591–3595.
  26. M. Sezer, S. Yalcinbas, M. Gulsu, A Taylor polynomial approach for solving generalized pantograph equations with nonhomogeneous term, Int. J. Comput. Math. 85 (2008) 1055–1063.
  27. E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model. 37 (2013) 4283–4294.
  28. E. H. Doha, A. H. Bhrawy, D. Baleanu, R. M. Hafez, A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations, Appl. Numer. Math. 77 (2014) 43–54.
  29. F. Shakeri, M. Dehghan, Solution of delay differential equations via a homotopy perturbation method, Math. Comput. Model. 48 (2008) 486–498.
  30. A. Ishtiaq, H. Brunner, T. Tang, A spectral method for pantograph–type delay differential equations and its convergence analysis, J. Comput. Math. 27 (2009) 254–265.
  31. J. M. Cushing, Integro–differential equations and delay models in population dynamics, Lecture Notes in Biomathematics, vol. 20, Springer–Verlag, Berlin (1977).
  32. W. G. Ajello, H. I. Freedman, J. Wu, A model of stage structured population growth with density dependent time delay, SIAM J. Appl. Math. 52 (1992) 855–869.
  33. A. Saadatmandi, M. Dehghan, Variational iteration method for solving a generalized pantograph equation, Comput. Math. Appl. 58 (2009) 2190–2196.
  34. D. J. Evans, K. R. Raslan, The Adomian decomposition method for solving delay differential equation, Int. J. Comput. Math. 82 (1) (2005) 49–54.
  35. S. Yuzba¸si, M. Sezer, An exponential approximation for solutions of generalized pantograph– delay differential equations, Appl. Math. Model. 37 (2013) 9160–9173.
  36. O. R. Isik, Z. Guney, M. Sezer, Bernstein series solutions of pantograph equations using polynomial interpolation, J. Differ. Equ. Appl. 18 (3) (2012) 357–374.
  37. M. Liu, D. Li, Properties of analytic solution and numerical solution of multi pantograph equation, Appl. Math. Comput. 155 (2004) 853–871.
  38. M. Dehghan, F. Shakeri, The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics, Phys. Scr. 78 (2008) 1–11.
  39. M. O. Aibinu, E. Momoniat, Approximate analytical solutions and applications of pantograph–type equations with Caputo derivative and variable orders, Appl. Math. Sci. Eng. 13 (1) (2023).
  40. S. Ruschel, T. Pereira, S. Yanchuk, L. S. Young, An SIQ delay differential equations model for disease control via isolation, J. Math. Biol. 79 (2019) 249–279.
  41. M. A. Z. Raja, Numerical treatment for boundary value problems of Pantograph functional differential equation using computational intelligence algorithms, Appl. Soft Comput. 24 (2014) 806–821.
  42. C. H. Hsiao, S. P. Wu, Numerical solution of time–varying functional differential equations via Haar wavelets, Appl. Math. Comput. 188 (2007) 1049–1058.
  43. M. Maleki, A. Davari, Fractional retarded differential equations and their numerical solution via a multistep collocation method, Appl. Numer. Math. 143 (2019) 203–222.