Design and Implementation of Multi -Criterion Decision Systems Based on Artificial Intelligence in Optimizing Production Process in Food and Drinks Industries
- Department of Mathematics, Isf.C., Islamic Azad University, Isfahan, Iran
Received: 08-08-2025
Revised: 16-09-2025
Accepted: 20-09-2025
Published in Issue 31-03-2026
Published Online: 21-09-2025
Copyright (c) 2025 Ahmad Biyabani Dehkordi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
This study introduces an innovative, multi-layered artificial intelligence (AI) framework designed to optimize food and beverage production processes, with an emphasis on sustainability, safety, and operational efficiency. The framework integrates hierarchical fuzzy analytic hierarchy process (fuzzy AHP) for multi-criteria decision-making, advanced data preprocessing techniques including auto encoders and feature engineering, and diverse AI models such as deep reinforcement learning (DRL), convolutional neural networks (CNN), and gradient boosting machines (GBM). A comprehensive digital twin environment simulates real-time plant operations, enabling validation and scenario analysis. The proposed methodology employs a ten-round decision refinement process, incorporating expert judgment, sensor data, visual defect detection, and predictive analytics to dynamically control process parameters, quality assurance, and resource allocation. The case study conducted within a Tehran dairy processing plant demonstrates substantial improvements in operational metrics: a reduction of energy consumption by 8%, microbial counts by 15%, waste by 10%, and zero safety violations over a three-month period. The integration of explainable AI (XAI) techniques enhances interpretability and stakeholder trust. The findings underscore the potential of such integrated AI-driven systems to revolutionize Industry 4.0 practices in food manufacturing offering pathways toward smarter, safer, and more sustainable production paradigms. This research provides a scalable, adaptable blueprint for future deployment across diverse industrial contexts.
Keywords
- Design and Implementation,
- Multi -Criterion Decision System,
- Artificial Intelligence,
- Optimizing,
- Production Process,
- Food and Drinks Industries
References
- Kumar S, Verma AK, Mirza A. Digitalisation, artificial intelligence, iot, and industry 4.0 and digital society. In: Digital transformation, artificial intelligence and society: opportunities and challenges. Singapore: Springer Nature Singapore; 2024. p. 35-57. doi:10.1007/978-981-97-1552-5_3
- Chang J, Wang H, Su W, He X, Tan M. Artificial intelligence in food bioactive peptides screening: Recent 23advances and future prospects. Trends Food Sci Technol. 2025;156:104845. doi:10.1016/j.tifs.2024.104845
- Zhang F. Design and implementation of industrial design and transformation system based on artificial intelligence technology. Math Probl Eng. 2022;2022:9342691. doi:10.1155/2022/9342691
- Li BH, Hou BC, Yu WT, Lu XB, Yang CW. Applications of artificial intelligence in intelligent manufacturing: a review. Front Inf Technol Electron Eng. 2017;18(1):86-96. doi:10.1631/FITEE.1601885
- Carpanzano E, Knüttel D. Advances in artificial intelligence methods applications in industrial control systems: Towards cognitive self-optimizing manufacturing systems. Appl Sci. 2022;12(21):10962. doi:10.3390/app122110962
- Marcineková K, Janáková Sujová A. Multi-objective optimization of manufacturing process using artificial neural networks. Systems. 2024;12(12):569. doi:10.3390/systems12070569
- Yang H, Jiao W, Zouyi L, Diao H, Xia S. Artificial intelligence in the food industry: innovations and applications. Discov Artif Intell. 2025;5(1):60. doi:10.1007/s44163-025-00049-5
- He C, Zhang C, Bian T, Jiao K, Su W, Wu KJ, et al. A review on artificial intelligence enabled design, synthesis, and process optimization of chemical products for industry 4.0. Processes. 2023;11(2):330. https://doi.org/10.3390/pr11020330
- Saju L, Selvaraj D, Vairaperumal T. Artificial intelligence and machine intelligence: modeling and optimization of bioenergy production. In: Computer Vision and Machine Intelligence for Renewable Energy Systems. Elsevier; 2025. p. 163-76. doi:10.1016/B978-0-443-13500-2.00013-4
- Duan Y, Edwards JS, Dwivedi YK. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int J Inf Manag. 2019;48:63-71. doi:10.1016/j.ijinfomgt.2019.01.021
- Binder C, Neureiter C, Lüder A. Towards a domain-specific information architecture enabling the investigation and optimization of flexible production systems by utilizing artificial intelligence. Int J Adv Manuf Technol. 2022;123(1):49-81. doi:10.1007/s00170-022-10167-2
- Gualdi F, Cordella A. Artificial intelligence and decision-making: The question of accountability. Int J Manag Decis Mak. 2021;22(2):125–44. doi:10.1504/IJMDM.2021.114960
- Lan X, Chen H. Simulation analysis of production scheduling algorithm for intelligent manufacturing cell based on artificial intelligence technology. Soft Comput. 2023;27(9):1–19. Doi:10.1007/s00500.023.07888.5
- Islam M. K, Ahmed H, Al Bashar M, Taher MA. Role of artificial intelligence and machine learning in optimizing inventory management across global industrial manufacturing & supply chain: A multi-country review. Int J Manag Inf Syst Data Sci. 2024;1(2):1-14.
- Gao Y, Shang Z, Kokossis A. Agent-based intelligent system development for decision support in chemical process industry. Expert Syst Appl. 2009;36(8):11099-107. doi:10.1016/j.eswa.2009.02.089
- Claassen GDH. Optimization-based decision support systems for planning problems in processing industries [dissertation]. Wageningen University and Research; 2014.
- Bello O, Holzmann J, Yaqoob T, Teodoriu C. Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J Artif Intell Soft Comput Res. 2015;5(2):121-39.
- Bello O, Teodoriu C, Yaqoob T, Oppelt J, Holzmann J, Obiwanne A. Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: SPE Nigeria Annual International Conference and Exhibition; 2016. (SPE-184320).
- Mukhamadieva KB, Mukhamadieva ZB. Designing the Production Systems with AI. In: Поколение будущего: Взгляд молодых ученых-2015; 2015. p. 13-5.
- Bakakeu J, Tolksdorf S, Bauer J, Klos HH, Peschke J, Fehrle A, et al. An artificial intelligence approach for online optimization of flexible manufacturing systems. Appl Mech Mater. 2018;882:96-108.
- García-Esteban JA, Curto B, Moreno V, González-Martín I, Revilla I, Vivar-Quintana A. A digitalization strategy for quality control in food industry based on Artificial Intelligence techniques. In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN); 2018. p. 221-6. doi:10.1109/INDIN.2018.8471993
- Goda D. R, Yerram S. R, Mallipeddi S. R. Stochastic optimization models for supply chain management: integrating uncertainty into decision-making processes. Glob Discov Econ Bus. 2018;7(2):123-36.
- Yue X, Chen Y. Strategy optimization of supply chain enterprises based on fuzzy decision making model in internet of things. IEEE Access. 2018;6:70378-87. doi:10.1109/ACCESS.2018.2879928
- Mohammadi V, Minaei S. Artificial intelligence in the production process. In: Engineering tools in the beverage industry. Vol. 3. 2019. p. 27-63. doi:10.1016/B978-0-12-815258-4.00002-0
- Gilner E, Galuszka A, Grychowski T. Application of artificial intelligence in sustainable building design-optimisation methods. In: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR); 2019. p. 81-6. doi:10.1109/MMAR.2019.8864646
- Shabaniyan T, Parsaei H, Aminsharifi A, Movahedi MM, Jahromi AT, Pouyesh S, et al. An artificial intelligence-based clinical decision support system for large kidney stone treatment. Australas Phys Eng Sci Med. 2019;42(3):771-9. doi:10.1007/s13246-019-00780-3
- Dear K. Artificial intelligence and decision-making. RUSI J. 2019;164(5-6):18-25. doi:10.1080/03071847.2019.1694260
- Scherer M. Artificial intelligence and legal decision-making: The wide open? J Int Arbitr. 2019;36(5):607–24. doi:10.1093/jintarb/mrz011
- Takyar A. AI use cases & applications across major industries. LeewayHertz-Software Development Company; 2023.
- Takyar, A., & Takyar, A. (2019). AI use cases & applications across major industries. LeewayHertz-AI Development Company.
- Zhou L, Zhang C, Liu F, Qiu Z, He Y. Application of deep learning in food: a review. Compr Rev Food Sci Food Saf. 2019;18(6):1793-811. doi:10.1111/1541-4337.12492
- Tsoumakas G. A survey of machine learning techniques for food sales prediction. Artif Intell Rev. 2019;52(1):441-7. doi:10.1007/s10462-019-09738-z
- Wan J, Li X, Dai HN, Kusiak A, Martinez-Garcia M, Li D. Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proc IEEE. 2020;109(4):377-98. doi:10.1109/JPROC.2020.3034808
- Romeo L, Loncarski J, Paolanti M, Bocchini G, Mancini A, Frontoni E. Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0. Expert Syst Appl. 2020;140:112869. doi:10.1016/j.eswa.2019.112869
- Stone M, Aravopoulou E, Ekinci Y, Evans G, Hobbs M, Labib A, et al. Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. Bottom Line. 2020;33(2):183-200. doi:10.1108/BL-12-2019-0131
- Sánchez JM, Rodríguez JP, Espitia HE. Review of artificial intelligence applied in decision-making processes in agricultural public policy. Processes. 2020;8(11):1374. doi:10.3390/pr8111374
- Jacobs T. Artificial Intelligence (AI) in supply chain & logistics supply. 2020 [cited 2021 Apr 27].
- Nayak J, Vakula K, Dinesh P, Naik B, Pelusi D. Intelligent food processing: Journey from artificial neural network to deep learning. Comput Sci Rev. 2020;38:100297. doi:10.1016/j.cosrev.2020.100297
- Camaréna S. Artificial intelligence in the design of the transitions to sustainable food systems. J Clean Prod. 2020;271:122574. doi:10.1016/j.jclepro.2020.122574
- Hassoun A, Bekhit AE-D, Jambrak AR, et al. The fourth industrial revolution in the food industry—part II: Emerging food trends. Crit Rev Food Sci Nutr. 2024;64(2):407–37. doi:10.1080/10408398.2022.2106472
- Qian J, Dai B, Wang B, et al. Traceability in food processing: problems, methods, and performance evaluations—a review. Crit Rev Food Sci Nutr. 2022;62(3):679–92. doi:10.1080/10408398.2020.1825925
- Kudashkina K, Corradini MG, Thirunathan P, et al. Artificial Intelligence technology in food safety: a behavioral approach. Trends Food Sci Technol. 2022;123:376–81. doi:10.1016/j.tifs.2022.03.021
- Thomas DM, Kleinberg S, Brown AW, et al. ML modeling practices to support the principles of AI and ethics in nutrition research. Nutr Diabetes. 2022;12(1):48. doi:10.1038/s41387-022-00224-0
- Chen F, Sun M, Du Y, et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac Res. 2022;53(12):4401–13. doi:10.1111/are.15938
- Toscano-Miranda R, Toro M, Aguilar J, et al. Artificial-intelligence and sensing techniques for the management of insect pests and diseases in cotton: a systematic literature review. J Agric Sci. 2022;160(1–2):16–31. doi:10.1017/S0021859622000260
- Miyazawa T, Hiratsuka Y, Toda M, Hatakeyama N, Ozawa H, Abe C, et al. Artificial intelligence in food science and nutrition: a narrative review. Nutr Rev. 2022;80(12):2288-300. doi:10.1093/nutrit/nuac033
- Hashmi AW, Mali HS, Meena A, Khilji IA, Hashmi MF. Artificial intelligence techniques for implementation of intelligent machining. Mater Today Proc. 2022;56:1947-55. doi:10.1016/j.matpr.2021.11.217
- Sadeghi S, Amiri M, Mansoori Mooseloo F. Artificial intelligence and its application in optimization under uncertainty. In: Thomas C, editor. Data Mining: Concepts and Applications. 2022. p. 113–33. doi:10.5772/intechopen.98628
- Fujimori R, Liu K, Soeno S, Naraba H, Ogura K, Hara K, et al. Acceptance, barriers, and facilitators to implementing artificial intelligence–based decision support systems in emergency departments: quantitative and qualitative evaluation. JMIR Form Res. 2022;6(6):e36501. doi:10.2196/36501
- Nguyen VT, Do P, Vosin A, Iung B. Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems. Reliab Eng Syst Saf. 2022;228:108757. doi:10.1016/j.ress.2022.108757
- Jia T, Wang C, Tian Z, Wang B, Tian F. Design of digital and intelligent financial decision support system based on artificial intelligence. Comput Intell Neurosci. 2022;2022:1962937. doi:10.1155/2022/1962937
- Dong Y, Yu X, Alharbi A, Ahmad S. AI-based production and application of English multimode online reading using multi-criteria decision support system. Soft Comput. 2022;26(20):10927-37. doi:10.1007/s00500-022-07380-6
- Abbasgholizadeh Rahimi S, Cwintal M, Huang Y, Ghadiri P, Grad R, Poenaru D, et al. Application of artificial intelligence in shared decision making: scoping review. JMIR Med Inform. 2022;10(8):e36199. doi:10.2196/36199
- Bokhari SAA, Myeong S. Use of artificial intelligence in smart cities for smart decision-making: A social innovation perspective. Sustainability. 2022;14(2):620. doi:10.3390/su14020620
- Vermesan O, editor. Artificial intelligence for digitising industry–applications. CRC Press; 2022.
- Armutak EA, Fendri M, Betti F, Bezamat F, Firth-Butterfield K, Halopé H, et al. Unlocking Value from Artificial Intelligence in Manufacturing. In: World Economic Forum; 2022.
- Khan R. Artificial intelligence and machine learning in food industries: A study. J Food Chem Nanotechnol. 2022;7(3):60-7
- Pallathadka H, Jawarneh M, Sammy F, Garchar V, Sanchez DT, Naved M. A review of using artificial intelligence and machine learning in food and agriculture industry. In: 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE); 2022. p. 2215-8. doi:10.1109/ICACITE53722.2022.9823802
- Qian C, Murphy SI, Orsi RH, et al. How can AI help improve food safety? Annu Rev Food Sci Technol. 2023;14:517–38. doi:10.1146/annurev-food-060721-013815
- Namkhah Z, Fatemi SF, Mansoori A, et al. Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications. Front Nutr. 2023;10:1295241. doi:10.3389/fnut.2023.1295241
- Oliveira Chaves L, Gomes Domingos AL, Louzada Fernandes D, Ribeiro Cerqueira F, Siqueira-Batista R, Bressan J. Applicability of machine learning techniques in food intake assessment: A systematic review. Crit Rev Food Sci Nutr. 2023;63(7):902-19. doi:10.1080/10408398.2021.1956425
- Varga I, Radočaj D, Jurišić M, et al. Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks. Comput Electron Agric. 2023;212:108076. doi:10.1016/j.compag.2023.108076
- Gao J, Zeng W, Ren Z, et al. A fertilization decision model for maize, rice, and soybean based on ML and swarm intelligent search algorithms. Agronomy. 2023;13(5):1400. doi:10.3390/agronomy13051400
- Przybył K, Koszela K. Applications MLP and other methods in artificial intelligence of fruit and vegetable in convective and spray drying. Appl Sci. 2023;13(5):2965. doi:10.3390/app13052965
- Nunes CA, Ribeiro MN, de Carvalho TCL, et al. Artificial intelligence in sensory and consumer studies of food products. Curr Opin Food Sci. 2023;50:101002. doi:10.1016/j.cofs.2023.101002
- Li T, Wei W, Xing S, et al. Deep learning-based near-infrared hyperspectral imaging for food nutrition estimation. Foods. 2023;12(17):3145. doi:10.3390/foods12173145
- Li X, Liu D, Pu Y, et al. Recent advance of intelligent packaging aided by artificial intelligence for monitoring food freshness. Foods. 2023;12(15):2976. doi:10.3390/foods12152976
- Mandal A, Ghosh AR. Role of artificial intelligence (AI) in fish growth and health status monitoring: a review on sustainable aquaculture. Aquac Int. 2023. doi:10.1007/s10499-023-01279-1
- Akkem Y, Biswas SK, Varanasi A. Smart farming using artificial intelligence: a review. Eng Appl Artif Intell. 2023;120:105899. doi:10.1016/j.engappai.2023.105899
- Alexander CS, Smith A, Ivanek R. Safer not to know? Shaping liability law and policy to incentivize adoption of predictive AI technologies in the food system. Front Artif Intell. 2023;6:1–9. doi:10.3389/frai.2023.1298604
- Neethirajan S. Artificial intelligence and sensor technologies in dairy livestock export: charting a digital transformation. Sensors. 2023;23(16):7045. doi:10.3390/s23167045
- Brazolin IF, Sousa FMM, dos Santos JWS, et al. A method for pH food dependent shelf-life prediction of intelligent sustainable packaging device using artificial neural networks. J Appl Polym Sci. 2024;141(28):e55646. doi:10.1002/app.55646
- Yakoubi S. Sustainable revolution: AI-driven enhancements for composite polymer processing and optimization in intelligent food packaging. Food Bioprocess Technol. 2024. doi:10.1007/s11947-024-03555-1
- Yin M, Huo L, Li N, et al. Packaging performance evaluation and freshness intelligent prediction modeling in grape transportation. Food Control. 2024;165:110684. doi:10.1016/j.foodcont.2024.110684
- Filho EV, Lang L, Aguiar ML, et al. Computer vision as a tool to support quality control and robotic handling of fruit: a case study. Appl Sci. 2024;14(21):9727. doi:10.3390/app14219727
- Ahn D. Accurate and reliable food nutrition estimation based on uncertainty-driven deep learning model. Appl Sci. 2024;14(18):8575. doi:10.3390/app14188575
- Kaushal S, Tammineni DK, Rana P, et al. Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances. Trends Food Sci Technol. 2024;146:104408. doi:10.1016/j.tifs.2024.104408
- Melak A, Aseged T, Shitaw T. The influence of artificial intelligence technology on the management of livestock farms. Int J Distrib Sens Netw. 2024;2024:8929748. doi:10.1155/2024/8929748
- Umutoni L, Samadi V. Application of ML approaches in supporting irrigation decision making: a review. Agric Water Manag. 2024;294:108710. doi:10.1016/j.agwat.2024.108710
- Yudhistira B, Adi P, Mulyani R, et al. Achieving sustainability in heat drying processing: leveraging artificial intelligence to maintain food quality and minimize carbon footprint. Compr Rev Food Sci Food Saf. 2024;23(5):e13413. doi:10.1111/1541-4337.13413
- Magarelli M, Novielli P, De Filippis F, et al. Explainable artificial intelligence and microbiome data for food geographical origin: the Mozzarella di Bufala Campana PDO Case of Study. Front Microbiol. 2024. doi:10.3389/fmicb.2024.1422359
- Liu H, Wang Y, Yan Z. Artificial intelligence and food processing firms productivity: evidence from China. Sustainability. 2024;16(14):5928. doi:10.3390/su16145928
- Liu Z, Wang S, Zhang Y, et al. Artificial intelligence in food safety: a decade review and bibliometric analysis. Foods. 2023;12(6):1242. doi:10.3390/foods12061242
- Barthwal R, Kathuria D, Joshi S, et al. New trends in the development and application of artificial intelligence in food processing. Innov Food Sci Emerg Technol. 2024;92:103600. doi:10.1016/j.ifset.2024.103600
- Nath PC, Mishra AK, Sharma R, et al. Recent advances in artificial intelligence towards the sustainable future of agri-food industry. Food Chem. 2024;447:138945. doi:10.1016/j.foodchem.2024.138945
- Lee C-C, Yan J, Wang F. Impact of population aging on food security in the context of artificial intelligence: evidence from China. Technol Forecast Soc Change. 2024;199:123062. doi:10.1016/j.techfore.2023.123062
- Rosca CM, Stancu A, Neculaiu CF, Gortoescu IA. Designing and implementing a public urban transport scheduling system based on artificial intelligence for smart cities. Appl Sci. 2024;14(19):8861. doi:10.3390/app14198861
- Rojek I, Kopowski J, Lewandowski J, Mikołajewski D. Use of machine learning to improve additive manufacturing processes. Appl Sci. 2024;14(15):6730. doi:10.3390/app14156730
- Chen W, Men Y, Fuster N, Osorio C, Juan AA. Artificial intelligence in logistics optimization with sustainable criteria: A review. Sustainability. 2024;16(21):9145. doi:10.3390/su16219145
- Ikram A, Mehmood H, Arshad MT, Rasheed A, Noreen S, Gnedeka KT. Applications of artificial intelligence (AI) in managing food quality and ensuring global food security. CyTA - J Food. 2024;22(1):2393287. doi:10.1080/19476337.2024.2393287
- Besigomwe K. AI-driven process design for closed-loop manufacturing. Cognizance J Multidiscip Stud. 2024;4(12):372–80. doi:10.47760/cognizance.2024.v04i12.035
- Kumar S, Verma AK, Mirza A. Digitalisation, artificial intelligence, iot, and industry 4.0 and digital society. In: Digital transformation, artificial intelligence and society: opportunities and challenges. Singapore: Springer Nature Singapore; 2024. p. 35-57. doi:10.1007/978-981-97-1552-5_3
- Mengistu D, Ashe G. Review of artificial intelligence powered food processing: enhancing safety and sustainability. J Agroalimentary Process Technol. 2024;30(2):192–202. doi:10.59463/JAPT.2024.2.14
- Machireddy JR. Artificial intelligence and machine learning application in food processing and its potential in Industry 4.0. Int J Artif Intell Mach Learn. 2024;3(2):40–53. doi:10.5281/zenodo.13306484
- Bhat MA, Rather MY, Singh P, et al. Advances in smart food authentication for enhanced safety and quality. Trends Food Sci Technol. 2025;155:104800. doi:10.1016/j.tifs.2024.104800
- Shen C, Wang R, Nawazish H, et al. Machine vision combined with deep learning–based approaches for food authentication: an integrative review and new insights. Compr Rev Food Sci Food Saf. 2024;23(6):e70054. doi:10.1111/1541-4337.70054
- Baeza-Yates R, Fayyad UM. Responsible AI: an urgent mandate. IEEE Intell Syst. 2024;39(1):12–7. doi:10.1109/MIS.2023.3343488
- Chhetri KB. Applications of artificial intelligence and machine learning in food quality control and safety assessment. Food Eng Rev. 2024;16(1):1-21. doi:10.1007/s12393-023-09363-1
- Bidyalakshmi T, Jyoti B, Mansuri SM, et al. Application of artificial intelligence in food processing: current status and future prospects. Food Eng Rev. 2024. doi:10.1007/s12393-024-09386-2
- Zatsu V, Shine AE, Tharakan JM, et al. Revolutionizing the food industry: the transformative power of artificial intelligence-a review. Food Chem X. 2024;24:101867. doi:10.1016/j.fochx.2024.101867
- Eed M, Alhussan AA, Qenawy A-ST, et al. Potato consumption forecasting based on a hybrid stacked deep learning model. Potato Res. 2024;1:1–9. doi:10.1007/s11540-024-09764-7
- Mitra R, Saha P, Tiwari M. Sales forecasting of a food and beverage company using deep clustering frameworks. Int J Prod Res. 2024;62(9):3320–32. doi:10.1080/00207543.2023.2254434
- Hübner N, Caspers J, Coroamă VC, et al. Machine-learning-based demand forecasting against food waste: life cycle environmental impacts and benefits of a bakery case study. J Ind Ecol. 2024. doi:10.1111/jiec.13528
- Rodrigues M, Miguéis V, Freitas S, et al. ML models for short-term demand forecasting in food catering services: a solution to reduce food waste. J Clean Prod. 2024;435:140265. doi:10.1016/j.jclepro.2023.140265
- Deng P, Lin X, Yu Z, et al. ML-enabled high-throughput industry screening of edible oils. Food Chem. 2024;447:139017. doi:10.1016/j.foodchem.2024.139017
- Chu Y, Wu J, Yan Z, et al. Towards generalizable food source identification: an explainable deep learning approach to rice authentication employing stable isotope and elemental marker analysis. Food Res Int. 2024;179:113967. doi:10.1016/j.foodres.2024.113967
- Chen F, Sun M, Du Y, et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac Res. 2022;53(12):4401–13. doi:10.1111/are.15938
- El Bhilat EM, El Jaouhari A, Hamidi LS. Assessing the influence of artificial intelligence on agri-food supply chain performance: the mediating effect of distribution network efficiency. Technol Forecast Soc Change. 2024;200:123149. doi:10.1016/j.techfore.2023.123149
- Lee J, Shin Y, Moon I. A hybrid deep reinforcement learning approach for a proactive transshipment of fresh food in the online–offline channel system. Transp Res E Logist Transp Rev. 2024;187:103576. doi:10.1016/j.tre.2024.103576
- Jokar F, Varnamkhasti MJ, Hadi-Vencheh A. Hybrid Multi-Criteria Decision-Making (MCDM) Approaches with Random Forest Regression for Interval-Based Fuzzy Uncertainty Management. Int J Math Model Comput. 2025;15(1):49-66.
- Taghizadeh M, Hadi-Vencheh A, Varnamkhasti MJ, Jamshidi A. Harnessing Interval Fuzzy Numbers: A Novel Approach to Multi-Criteria Decision-Making Models. Int J Math Model Comput. 2025;15(3):161-79.
- Naser MMR, Varnamkhasti MJ, Mohammed HJ, Aghajani M. Artificial Intelligence as a Catalyst for Operational Excellence in Iraqi Industries: Implementation of a Proposed Model. Int J Math Model Comput. 2024;14(2).
- Alsaedi AGN, Varnamkhasti MJ, Mohammed HJ, Aghajani M. Integrating Multi-Criteria Decision Analysis with Deep Reinforcement Learning: A Novel Framework for Intelligent Decision-Making in Iraqi Industries. Int J Math Model Comput. 2024;14(2).
- Armutak EA, Fendri M, Betti F, Bezamat F, Firth-Butterfield K, Halopé H, et al. Unlocking Value from Artificial Intelligence in Manufacturing. In: World Economic Forum; 2022.
- Naser MMR, Varnamkhasti MJ, Mohammed HJ, Aghajani M. Designing a Model for Implementing Operational Decisions in the Industry Based on Artificial Intelligence. Int J Math Model Comput. 2025;15(1):1-19.
- Buyuktepe O, Catal C, Kar G, et al. Food fraud detection using explainable artificial intelligence. Expert Syst. 2025. doi:10.1111/exsy.13387
- Fatih ÖZ. Artificial intelligence in sustainable food design: Technological, ethical consideration, and future. 2025.
- Harikrishnan S, Kaushik D, Rasane P, Kumar A, Kaur N, Reddy CK, et al. Artificial Intelligence in Sustainable Food Design: Technological, Ethical Consideration, and Future. Trends Food Sci Technol. 2025;105152. doi:10.1016/j.tifs.2025.105152
- Jayan H, Min W, Guo Z. Applications of Artificial Intelligence in Food Industry. Foods. 2025;14(7):1241. doi:10.3390/foods14071241
- Agrawal K, Goktas P, Holtkemper M, Beecks C, Kumar N. AI-driven transformation in food manufacturing: a pathway to sustainable efficiency and quality assurance. Front Nutr. 2025;12:1553942. doi:10.3389/fnut.2024.1553942
- Dhal SB, Kar D. Leveraging artificial intelligence and advanced food processing techniques for enhanced food safety, quality, and security: a comprehensive review. Discov Appl Sci. 2025;7(1):75. doi:10.1007/s42452-025-06121-8
- Song X, Zhang X, Dong G, Ding H, Cui X, Han Y, et al. AI in food industry automation: applications and challenges. Front Sustain Food Syst. 2025;9:1575430. doi: 10.3389/fsufs.2025.1575430
- Chen F, Sun M, Du Y, et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac Res. 2022;53(12):4401–13. doi: 10.1111/are.15938
10.57647/ijm2c.2026.160103