10.57647/ijm2c.2026.160103

Design and Implementation of Multi -Criterion Decision Systems Based on Artificial Intelligence in Optimizing Production Process in Food and Drinks Industries

  1. Department of Mathematics, Isf.C., Islamic Azad University, Isfahan, Iran

Received: 08-08-2025

Revised: 16-09-2025

Accepted: 20-09-2025

Published in Issue 31-03-2026

Published Online: 21-09-2025

How to Cite

Biyabani Dehkordi, A. (2026). Design and Implementation of Multi -Criterion Decision Systems Based on Artificial Intelligence in Optimizing Production Process in Food and Drinks Industries. International Journal of Mathematical Modelling & Computations. https://doi.org/10.57647/ijm2c.2026.160103

Abstract

This study introduces an innovative, multi-layered artificial intelligence (AI) framework designed to optimize food and beverage production processes, with an emphasis on sustainability, safety, and operational efficiency. The framework integrates hierarchical fuzzy analytic hierarchy process (fuzzy AHP) for multi-criteria decision-making, advanced data preprocessing techniques including auto encoders and feature engineering, and diverse AI models such as deep reinforcement learning (DRL), convolutional neural networks (CNN), and gradient boosting machines (GBM). A comprehensive digital twin environment simulates real-time plant operations, enabling validation and scenario analysis. The proposed methodology employs a ten-round decision refinement process, incorporating expert judgment, sensor data, visual defect detection, and predictive analytics to dynamically control process parameters, quality assurance, and resource allocation. The case study conducted within a Tehran dairy processing plant demonstrates substantial improvements in operational metrics: a reduction of energy consumption by 8%, microbial counts by 15%, waste by 10%, and zero safety violations over a three-month period. The integration of explainable AI (XAI) techniques enhances interpretability and stakeholder trust. The findings underscore the potential of such integrated AI-driven systems to revolutionize Industry 4.0 practices in food manufacturing offering pathways toward smarter, safer, and more sustainable production paradigms. This research provides a scalable, adaptable blueprint for future deployment across diverse industrial contexts.

Keywords

  • Design and Implementation,
  • Multi -Criterion Decision System,
  • Artificial Intelligence,
  • Optimizing,
  • Production Process,
  • Food and Drinks Industries

References

  1. Kumar S, Verma AK, Mirza A. Digitalisation, artificial intelligence, iot, and industry 4.0 and digital society. In: Digital transformation, artificial intelligence and society: opportunities and challenges. Singapore: Springer Nature Singapore; 2024. p. 35-57. doi:10.1007/978-981-97-1552-5_3
  2. Chang J, Wang H, Su W, He X, Tan M. Artificial intelligence in food bioactive peptides screening: Recent 23advances and future prospects. Trends Food Sci Technol. 2025;156:104845. doi:10.1016/j.tifs.2024.104845
  3. Zhang F. Design and implementation of industrial design and transformation system based on artificial intelligence technology. Math Probl Eng. 2022;2022:9342691. doi:10.1155/2022/9342691
  4. Li BH, Hou BC, Yu WT, Lu XB, Yang CW. Applications of artificial intelligence in intelligent manufacturing: a review. Front Inf Technol Electron Eng. 2017;18(1):86-96. doi:10.1631/FITEE.1601885
  5. Carpanzano E, Knüttel D. Advances in artificial intelligence methods applications in industrial control systems: Towards cognitive self-optimizing manufacturing systems. Appl Sci. 2022;12(21):10962. doi:10.3390/app122110962
  6. Marcineková K, Janáková Sujová A. Multi-objective optimization of manufacturing process using artificial neural networks. Systems. 2024;12(12):569. doi:10.3390/systems12070569
  7. Yang H, Jiao W, Zouyi L, Diao H, Xia S. Artificial intelligence in the food industry: innovations and applications. Discov Artif Intell. 2025;5(1):60. doi:10.1007/s44163-025-00049-5
  8. He C, Zhang C, Bian T, Jiao K, Su W, Wu KJ, et al. A review on artificial intelligence enabled design, synthesis, and process optimization of chemical products for industry 4.0. Processes. 2023;11(2):330. https://doi.org/10.3390/pr11020330
  9. Saju L, Selvaraj D, Vairaperumal T. Artificial intelligence and machine intelligence: modeling and optimization of bioenergy production. In: Computer Vision and Machine Intelligence for Renewable Energy Systems. Elsevier; 2025. p. 163-76. doi:10.1016/B978-0-443-13500-2.00013-4
  10. Duan Y, Edwards JS, Dwivedi YK. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int J Inf Manag. 2019;48:63-71. doi:10.1016/j.ijinfomgt.2019.01.021
  11. Binder C, Neureiter C, Lüder A. Towards a domain-specific information architecture enabling the investigation and optimization of flexible production systems by utilizing artificial intelligence. Int J Adv Manuf Technol. 2022;123(1):49-81. doi:10.1007/s00170-022-10167-2
  12. Gualdi F, Cordella A. Artificial intelligence and decision-making: The question of accountability. Int J Manag Decis Mak. 2021;22(2):125–44. doi:10.1504/IJMDM.2021.114960
  13. Lan X, Chen H. Simulation analysis of production scheduling algorithm for intelligent manufacturing cell based on artificial intelligence technology. Soft Comput. 2023;27(9):1–19. Doi:10.1007/s00500.023.07888.5
  14. Islam M. K, Ahmed H, Al Bashar M, Taher MA. Role of artificial intelligence and machine learning in optimizing inventory management across global industrial manufacturing & supply chain: A multi-country review. Int J Manag Inf Syst Data Sci. 2024;1(2):1-14.
  15. Gao Y, Shang Z, Kokossis A. Agent-based intelligent system development for decision support in chemical process industry. Expert Syst Appl. 2009;36(8):11099-107. doi:10.1016/j.eswa.2009.02.089
  16. Claassen GDH. Optimization-based decision support systems for planning problems in processing industries [dissertation]. Wageningen University and Research; 2014.
  17. Bello O, Holzmann J, Yaqoob T, Teodoriu C. Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J Artif Intell Soft Comput Res. 2015;5(2):121-39.
  18. Bello O, Teodoriu C, Yaqoob T, Oppelt J, Holzmann J, Obiwanne A. Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: SPE Nigeria Annual International Conference and Exhibition; 2016. (SPE-184320).
  19. Mukhamadieva KB, Mukhamadieva ZB. Designing the Production Systems with AI. In: Поколение будущего: Взгляд молодых ученых-2015; 2015. p. 13-5.
  20. Bakakeu J, Tolksdorf S, Bauer J, Klos HH, Peschke J, Fehrle A, et al. An artificial intelligence approach for online optimization of flexible manufacturing systems. Appl Mech Mater. 2018;882:96-108.
  21. García-Esteban JA, Curto B, Moreno V, González-Martín I, Revilla I, Vivar-Quintana A. A digitalization strategy for quality control in food industry based on Artificial Intelligence techniques. In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN); 2018. p. 221-6. doi:10.1109/INDIN.2018.8471993
  22. Goda D. R, Yerram S. R, Mallipeddi S. R. Stochastic optimization models for supply chain management: integrating uncertainty into decision-making processes. Glob Discov Econ Bus. 2018;7(2):123-36.
  23. Yue X, Chen Y. Strategy optimization of supply chain enterprises based on fuzzy decision making model in internet of things. IEEE Access. 2018;6:70378-87. doi:10.1109/ACCESS.2018.2879928
  24. Mohammadi V, Minaei S. Artificial intelligence in the production process. In: Engineering tools in the beverage industry. Vol. 3. 2019. p. 27-63. doi:10.1016/B978-0-12-815258-4.00002-0
  25. Gilner E, Galuszka A, Grychowski T. Application of artificial intelligence in sustainable building design-optimisation methods. In: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR); 2019. p. 81-6. doi:10.1109/MMAR.2019.8864646
  26. Shabaniyan T, Parsaei H, Aminsharifi A, Movahedi MM, Jahromi AT, Pouyesh S, et al. An artificial intelligence-based clinical decision support system for large kidney stone treatment. Australas Phys Eng Sci Med. 2019;42(3):771-9. doi:10.1007/s13246-019-00780-3
  27. Dear K. Artificial intelligence and decision-making. RUSI J. 2019;164(5-6):18-25. doi:10.1080/03071847.2019.1694260
  28. Scherer M. Artificial intelligence and legal decision-making: The wide open? J Int Arbitr. 2019;36(5):607–24. doi:10.1093/jintarb/mrz011
  29. Takyar A. AI use cases & applications across major industries. LeewayHertz-Software Development Company; 2023.
  30. Takyar, A., & Takyar, A. (2019). AI use cases & applications across major industries. LeewayHertz-AI Development Company.
  31. Zhou L, Zhang C, Liu F, Qiu Z, He Y. Application of deep learning in food: a review. Compr Rev Food Sci Food Saf. 2019;18(6):1793-811. doi:10.1111/1541-4337.12492
  32. Tsoumakas G. A survey of machine learning techniques for food sales prediction. Artif Intell Rev. 2019;52(1):441-7. doi:10.1007/s10462-019-09738-z
  33. Wan J, Li X, Dai HN, Kusiak A, Martinez-Garcia M, Li D. Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proc IEEE. 2020;109(4):377-98. doi:10.1109/JPROC.2020.3034808
  34. Romeo L, Loncarski J, Paolanti M, Bocchini G, Mancini A, Frontoni E. Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0. Expert Syst Appl. 2020;140:112869. doi:10.1016/j.eswa.2019.112869
  35. Stone M, Aravopoulou E, Ekinci Y, Evans G, Hobbs M, Labib A, et al. Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. Bottom Line. 2020;33(2):183-200. doi:10.1108/BL-12-2019-0131
  36. Sánchez JM, Rodríguez JP, Espitia HE. Review of artificial intelligence applied in decision-making processes in agricultural public policy. Processes. 2020;8(11):1374. doi:10.3390/pr8111374
  37. Jacobs T. Artificial Intelligence (AI) in supply chain & logistics supply. 2020 [cited 2021 Apr 27].
  38. Nayak J, Vakula K, Dinesh P, Naik B, Pelusi D. Intelligent food processing: Journey from artificial neural network to deep learning. Comput Sci Rev. 2020;38:100297. doi:10.1016/j.cosrev.2020.100297
  39. Camaréna S. Artificial intelligence in the design of the transitions to sustainable food systems. J Clean Prod. 2020;271:122574. doi:10.1016/j.jclepro.2020.122574
  40. Hassoun A, Bekhit AE-D, Jambrak AR, et al. The fourth industrial revolution in the food industry—part II: Emerging food trends. Crit Rev Food Sci Nutr. 2024;64(2):407–37. doi:10.1080/10408398.2022.2106472
  41. Qian J, Dai B, Wang B, et al. Traceability in food processing: problems, methods, and performance evaluations—a review. Crit Rev Food Sci Nutr. 2022;62(3):679–92. doi:10.1080/10408398.2020.1825925
  42. Kudashkina K, Corradini MG, Thirunathan P, et al. Artificial Intelligence technology in food safety: a behavioral approach. Trends Food Sci Technol. 2022;123:376–81. doi:10.1016/j.tifs.2022.03.021
  43. Thomas DM, Kleinberg S, Brown AW, et al. ML modeling practices to support the principles of AI and ethics in nutrition research. Nutr Diabetes. 2022;12(1):48. doi:10.1038/s41387-022-00224-0
  44. Chen F, Sun M, Du Y, et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac Res. 2022;53(12):4401–13. doi:10.1111/are.15938
  45. Toscano-Miranda R, Toro M, Aguilar J, et al. Artificial-intelligence and sensing techniques for the management of insect pests and diseases in cotton: a systematic literature review. J Agric Sci. 2022;160(1–2):16–31. doi:10.1017/S0021859622000260
  46. Miyazawa T, Hiratsuka Y, Toda M, Hatakeyama N, Ozawa H, Abe C, et al. Artificial intelligence in food science and nutrition: a narrative review. Nutr Rev. 2022;80(12):2288-300. doi:10.1093/nutrit/nuac033
  47. Hashmi AW, Mali HS, Meena A, Khilji IA, Hashmi MF. Artificial intelligence techniques for implementation of intelligent machining. Mater Today Proc. 2022;56:1947-55. doi:10.1016/j.matpr.2021.11.217
  48. Sadeghi S, Amiri M, Mansoori Mooseloo F. Artificial intelligence and its application in optimization under uncertainty. In: Thomas C, editor. Data Mining: Concepts and Applications. 2022. p. 113–33. doi:10.5772/intechopen.98628
  49. Fujimori R, Liu K, Soeno S, Naraba H, Ogura K, Hara K, et al. Acceptance, barriers, and facilitators to implementing artificial intelligence–based decision support systems in emergency departments: quantitative and qualitative evaluation. JMIR Form Res. 2022;6(6):e36501. doi:10.2196/36501
  50. Nguyen VT, Do P, Vosin A, Iung B. Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems. Reliab Eng Syst Saf. 2022;228:108757. doi:10.1016/j.ress.2022.108757
  51. Jia T, Wang C, Tian Z, Wang B, Tian F. Design of digital and intelligent financial decision support system based on artificial intelligence. Comput Intell Neurosci. 2022;2022:1962937. doi:10.1155/2022/1962937
  52. Dong Y, Yu X, Alharbi A, Ahmad S. AI-based production and application of English multimode online reading using multi-criteria decision support system. Soft Comput. 2022;26(20):10927-37. doi:10.1007/s00500-022-07380-6
  53. Abbasgholizadeh Rahimi S, Cwintal M, Huang Y, Ghadiri P, Grad R, Poenaru D, et al. Application of artificial intelligence in shared decision making: scoping review. JMIR Med Inform. 2022;10(8):e36199. doi:10.2196/36199
  54. Bokhari SAA, Myeong S. Use of artificial intelligence in smart cities for smart decision-making: A social innovation perspective. Sustainability. 2022;14(2):620. doi:10.3390/su14020620
  55. Vermesan O, editor. Artificial intelligence for digitising industry–applications. CRC Press; 2022.
  56. Armutak EA, Fendri M, Betti F, Bezamat F, Firth-Butterfield K, Halopé H, et al. Unlocking Value from Artificial Intelligence in Manufacturing. In: World Economic Forum; 2022.
  57. Khan R. Artificial intelligence and machine learning in food industries: A study. J Food Chem Nanotechnol. 2022;7(3):60-7
  58. Pallathadka H, Jawarneh M, Sammy F, Garchar V, Sanchez DT, Naved M. A review of using artificial intelligence and machine learning in food and agriculture industry. In: 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE); 2022. p. 2215-8. doi:10.1109/ICACITE53722.2022.9823802
  59. Qian C, Murphy SI, Orsi RH, et al. How can AI help improve food safety? Annu Rev Food Sci Technol. 2023;14:517–38. doi:10.1146/annurev-food-060721-013815
  60. Namkhah Z, Fatemi SF, Mansoori A, et al. Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications. Front Nutr. 2023;10:1295241. doi:10.3389/fnut.2023.1295241
  61. Oliveira Chaves L, Gomes Domingos AL, Louzada Fernandes D, Ribeiro Cerqueira F, Siqueira-Batista R, Bressan J. Applicability of machine learning techniques in food intake assessment: A systematic review. Crit Rev Food Sci Nutr. 2023;63(7):902-19. doi:10.1080/10408398.2021.1956425
  62. Varga I, Radočaj D, Jurišić M, et al. Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks. Comput Electron Agric. 2023;212:108076. doi:10.1016/j.compag.2023.108076
  63. Gao J, Zeng W, Ren Z, et al. A fertilization decision model for maize, rice, and soybean based on ML and swarm intelligent search algorithms. Agronomy. 2023;13(5):1400. doi:10.3390/agronomy13051400
  64. Przybył K, Koszela K. Applications MLP and other methods in artificial intelligence of fruit and vegetable in convective and spray drying. Appl Sci. 2023;13(5):2965. doi:10.3390/app13052965
  65. Nunes CA, Ribeiro MN, de Carvalho TCL, et al. Artificial intelligence in sensory and consumer studies of food products. Curr Opin Food Sci. 2023;50:101002. doi:10.1016/j.cofs.2023.101002
  66. Li T, Wei W, Xing S, et al. Deep learning-based near-infrared hyperspectral imaging for food nutrition estimation. Foods. 2023;12(17):3145. doi:10.3390/foods12173145
  67. Li X, Liu D, Pu Y, et al. Recent advance of intelligent packaging aided by artificial intelligence for monitoring food freshness. Foods. 2023;12(15):2976. doi:10.3390/foods12152976
  68. Mandal A, Ghosh AR. Role of artificial intelligence (AI) in fish growth and health status monitoring: a review on sustainable aquaculture. Aquac Int. 2023. doi:10.1007/s10499-023-01279-1
  69. Akkem Y, Biswas SK, Varanasi A. Smart farming using artificial intelligence: a review. Eng Appl Artif Intell. 2023;120:105899. doi:10.1016/j.engappai.2023.105899
  70. Alexander CS, Smith A, Ivanek R. Safer not to know? Shaping liability law and policy to incentivize adoption of predictive AI technologies in the food system. Front Artif Intell. 2023;6:1–9. doi:10.3389/frai.2023.1298604
  71. Neethirajan S. Artificial intelligence and sensor technologies in dairy livestock export: charting a digital transformation. Sensors. 2023;23(16):7045. doi:10.3390/s23167045
  72. Brazolin IF, Sousa FMM, dos Santos JWS, et al. A method for pH food dependent shelf-life prediction of intelligent sustainable packaging device using artificial neural networks. J Appl Polym Sci. 2024;141(28):e55646. doi:10.1002/app.55646
  73. Yakoubi S. Sustainable revolution: AI-driven enhancements for composite polymer processing and optimization in intelligent food packaging. Food Bioprocess Technol. 2024. doi:10.1007/s11947-024-03555-1
  74. Yin M, Huo L, Li N, et al. Packaging performance evaluation and freshness intelligent prediction modeling in grape transportation. Food Control. 2024;165:110684. doi:10.1016/j.foodcont.2024.110684
  75. Filho EV, Lang L, Aguiar ML, et al. Computer vision as a tool to support quality control and robotic handling of fruit: a case study. Appl Sci. 2024;14(21):9727. doi:10.3390/app14219727
  76. Ahn D. Accurate and reliable food nutrition estimation based on uncertainty-driven deep learning model. Appl Sci. 2024;14(18):8575. doi:10.3390/app14188575
  77. Kaushal S, Tammineni DK, Rana P, et al. Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances. Trends Food Sci Technol. 2024;146:104408. doi:10.1016/j.tifs.2024.104408
  78. Melak A, Aseged T, Shitaw T. The influence of artificial intelligence technology on the management of livestock farms. Int J Distrib Sens Netw. 2024;2024:8929748. doi:10.1155/2024/8929748
  79. Umutoni L, Samadi V. Application of ML approaches in supporting irrigation decision making: a review. Agric Water Manag. 2024;294:108710. doi:10.1016/j.agwat.2024.108710
  80. Yudhistira B, Adi P, Mulyani R, et al. Achieving sustainability in heat drying processing: leveraging artificial intelligence to maintain food quality and minimize carbon footprint. Compr Rev Food Sci Food Saf. 2024;23(5):e13413. doi:10.1111/1541-4337.13413
  81. Magarelli M, Novielli P, De Filippis F, et al. Explainable artificial intelligence and microbiome data for food geographical origin: the Mozzarella di Bufala Campana PDO Case of Study. Front Microbiol. 2024. doi:10.3389/fmicb.2024.1422359
  82. Liu H, Wang Y, Yan Z. Artificial intelligence and food processing firms productivity: evidence from China. Sustainability. 2024;16(14):5928. doi:10.3390/su16145928
  83. Liu Z, Wang S, Zhang Y, et al. Artificial intelligence in food safety: a decade review and bibliometric analysis. Foods. 2023;12(6):1242. doi:10.3390/foods12061242
  84. Barthwal R, Kathuria D, Joshi S, et al. New trends in the development and application of artificial intelligence in food processing. Innov Food Sci Emerg Technol. 2024;92:103600. doi:10.1016/j.ifset.2024.103600
  85. Nath PC, Mishra AK, Sharma R, et al. Recent advances in artificial intelligence towards the sustainable future of agri-food industry. Food Chem. 2024;447:138945. doi:10.1016/j.foodchem.2024.138945
  86. Lee C-C, Yan J, Wang F. Impact of population aging on food security in the context of artificial intelligence: evidence from China. Technol Forecast Soc Change. 2024;199:123062. doi:10.1016/j.techfore.2023.123062
  87. Rosca CM, Stancu A, Neculaiu CF, Gortoescu IA. Designing and implementing a public urban transport scheduling system based on artificial intelligence for smart cities. Appl Sci. 2024;14(19):8861. doi:10.3390/app14198861
  88. Rojek I, Kopowski J, Lewandowski J, Mikołajewski D. Use of machine learning to improve additive manufacturing processes. Appl Sci. 2024;14(15):6730. doi:10.3390/app14156730
  89. Chen W, Men Y, Fuster N, Osorio C, Juan AA. Artificial intelligence in logistics optimization with sustainable criteria: A review. Sustainability. 2024;16(21):9145. doi:10.3390/su16219145
  90. Ikram A, Mehmood H, Arshad MT, Rasheed A, Noreen S, Gnedeka KT. Applications of artificial intelligence (AI) in managing food quality and ensuring global food security. CyTA - J Food. 2024;22(1):2393287. doi:10.1080/19476337.2024.2393287
  91. Besigomwe K. AI-driven process design for closed-loop manufacturing. Cognizance J Multidiscip Stud. 2024;4(12):372–80. doi:10.47760/cognizance.2024.v04i12.035
  92. Kumar S, Verma AK, Mirza A. Digitalisation, artificial intelligence, iot, and industry 4.0 and digital society. In: Digital transformation, artificial intelligence and society: opportunities and challenges. Singapore: Springer Nature Singapore; 2024. p. 35-57. doi:10.1007/978-981-97-1552-5_3
  93. Mengistu D, Ashe G. Review of artificial intelligence powered food processing: enhancing safety and sustainability. J Agroalimentary Process Technol. 2024;30(2):192–202. doi:10.59463/JAPT.2024.2.14
  94. Machireddy JR. Artificial intelligence and machine learning application in food processing and its potential in Industry 4.0. Int J Artif Intell Mach Learn. 2024;3(2):40–53. doi:10.5281/zenodo.13306484
  95. Bhat MA, Rather MY, Singh P, et al. Advances in smart food authentication for enhanced safety and quality. Trends Food Sci Technol. 2025;155:104800. doi:10.1016/j.tifs.2024.104800
  96. Shen C, Wang R, Nawazish H, et al. Machine vision combined with deep learning–based approaches for food authentication: an integrative review and new insights. Compr Rev Food Sci Food Saf. 2024;23(6):e70054. doi:10.1111/1541-4337.70054
  97. Baeza-Yates R, Fayyad UM. Responsible AI: an urgent mandate. IEEE Intell Syst. 2024;39(1):12–7. doi:10.1109/MIS.2023.3343488
  98. Chhetri KB. Applications of artificial intelligence and machine learning in food quality control and safety assessment. Food Eng Rev. 2024;16(1):1-21. doi:10.1007/s12393-023-09363-1
  99. Bidyalakshmi T, Jyoti B, Mansuri SM, et al. Application of artificial intelligence in food processing: current status and future prospects. Food Eng Rev. 2024. doi:10.1007/s12393-024-09386-2
  100. Zatsu V, Shine AE, Tharakan JM, et al. Revolutionizing the food industry: the transformative power of artificial intelligence-a review. Food Chem X. 2024;24:101867. doi:10.1016/j.fochx.2024.101867
  101. Eed M, Alhussan AA, Qenawy A-ST, et al. Potato consumption forecasting based on a hybrid stacked deep learning model. Potato Res. 2024;1:1–9. doi:10.1007/s11540-024-09764-7
  102. Mitra R, Saha P, Tiwari M. Sales forecasting of a food and beverage company using deep clustering frameworks. Int J Prod Res. 2024;62(9):3320–32. doi:10.1080/00207543.2023.2254434
  103. Hübner N, Caspers J, Coroamă VC, et al. Machine-learning-based demand forecasting against food waste: life cycle environmental impacts and benefits of a bakery case study. J Ind Ecol. 2024. doi:10.1111/jiec.13528
  104. Rodrigues M, Miguéis V, Freitas S, et al. ML models for short-term demand forecasting in food catering services: a solution to reduce food waste. J Clean Prod. 2024;435:140265. doi:10.1016/j.jclepro.2023.140265
  105. Deng P, Lin X, Yu Z, et al. ML-enabled high-throughput industry screening of edible oils. Food Chem. 2024;447:139017. doi:10.1016/j.foodchem.2024.139017
  106. Chu Y, Wu J, Yan Z, et al. Towards generalizable food source identification: an explainable deep learning approach to rice authentication employing stable isotope and elemental marker analysis. Food Res Int. 2024;179:113967. doi:10.1016/j.foodres.2024.113967
  107. Chen F, Sun M, Du Y, et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac Res. 2022;53(12):4401–13. doi:10.1111/are.15938
  108. El Bhilat EM, El Jaouhari A, Hamidi LS. Assessing the influence of artificial intelligence on agri-food supply chain performance: the mediating effect of distribution network efficiency. Technol Forecast Soc Change. 2024;200:123149. doi:10.1016/j.techfore.2023.123149
  109. Lee J, Shin Y, Moon I. A hybrid deep reinforcement learning approach for a proactive transshipment of fresh food in the online–offline channel system. Transp Res E Logist Transp Rev. 2024;187:103576. doi:10.1016/j.tre.2024.103576
  110. Jokar F, Varnamkhasti MJ, Hadi-Vencheh A. Hybrid Multi-Criteria Decision-Making (MCDM) Approaches with Random Forest Regression for Interval-Based Fuzzy Uncertainty Management. Int J Math Model Comput. 2025;15(1):49-66.
  111. Taghizadeh M, Hadi-Vencheh A, Varnamkhasti MJ, Jamshidi A. Harnessing Interval Fuzzy Numbers: A Novel Approach to Multi-Criteria Decision-Making Models. Int J Math Model Comput. 2025;15(3):161-79.
  112. Naser MMR, Varnamkhasti MJ, Mohammed HJ, Aghajani M. Artificial Intelligence as a Catalyst for Operational Excellence in Iraqi Industries: Implementation of a Proposed Model. Int J Math Model Comput. 2024;14(2).
  113. Alsaedi AGN, Varnamkhasti MJ, Mohammed HJ, Aghajani M. Integrating Multi-Criteria Decision Analysis with Deep Reinforcement Learning: A Novel Framework for Intelligent Decision-Making in Iraqi Industries. Int J Math Model Comput. 2024;14(2).
  114. Armutak EA, Fendri M, Betti F, Bezamat F, Firth-Butterfield K, Halopé H, et al. Unlocking Value from Artificial Intelligence in Manufacturing. In: World Economic Forum; 2022.
  115. Naser MMR, Varnamkhasti MJ, Mohammed HJ, Aghajani M. Designing a Model for Implementing Operational Decisions in the Industry Based on Artificial Intelligence. Int J Math Model Comput. 2025;15(1):1-19.
  116. Buyuktepe O, Catal C, Kar G, et al. Food fraud detection using explainable artificial intelligence. Expert Syst. 2025. doi:10.1111/exsy.13387
  117. Fatih ÖZ. Artificial intelligence in sustainable food design: Technological, ethical consideration, and future. 2025.
  118. Harikrishnan S, Kaushik D, Rasane P, Kumar A, Kaur N, Reddy CK, et al. Artificial Intelligence in Sustainable Food Design: Technological, Ethical Consideration, and Future. Trends Food Sci Technol. 2025;105152. doi:10.1016/j.tifs.2025.105152
  119. Jayan H, Min W, Guo Z. Applications of Artificial Intelligence in Food Industry. Foods. 2025;14(7):1241. doi:10.3390/foods14071241
  120. Agrawal K, Goktas P, Holtkemper M, Beecks C, Kumar N. AI-driven transformation in food manufacturing: a pathway to sustainable efficiency and quality assurance. Front Nutr. 2025;12:1553942. doi:10.3389/fnut.2024.1553942
  121. Dhal SB, Kar D. Leveraging artificial intelligence and advanced food processing techniques for enhanced food safety, quality, and security: a comprehensive review. Discov Appl Sci. 2025;7(1):75. doi:10.1007/s42452-025-06121-8
  122. Song X, Zhang X, Dong G, Ding H, Cui X, Han Y, et al. AI in food industry automation: applications and challenges. Front Sustain Food Syst. 2025;9:1575430. doi: 10.3389/fsufs.2025.1575430
  123. Chen F, Sun M, Du Y, et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac Res. 2022;53(12):4401–13. doi: 10.1111/are.15938