10.71932/

Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability

  1. Laboratoire Lmdan, Département de Mathématiques de la Décision, Université Cheikh Anta Diop de Dakar, Faculté des Sciences Economiques et Gestion, BP 5683 Dakar Fann, Senegal

Published in Issue 12-07-2025

How to Cite

Sene, N. (2025). Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability. International Journal of Mathematical Modelling & Computations, 10(01). https://doi.org/10.71932/

Abstract

This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional differential equation using the generalized Mittag-Leffler input stability of the sub-fractional differential equations. In other words, we prove a cascade of fractional differential equations, which are generalized Mittag-Leffler input stables and governed by a fractional differential equation, which is generalized Mittag-Leffler stable, is generalized Mittag-Leffler stable. We give Illustrative examples to illustrate our main results. Note in our paper; we use the generalized fractional derivative in Caputo-Liouville sense. 

Keywords

  • Mittag-Leffler stability,
  • Generalized fractional derivatives,
  • Input stability

References

  1. [1] T. Abdeljawad, Different type kernel h-fractional differences and their fractional h-sums, Chaos,
  2. Solitons & Fractals, 116 (2018) 146-156.
  3. [2] T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial
  4. value problems and Gronwall’s inequality, Journal of Computational and Applied Mathematics, 339
  5. (2018) 218-230.
  6. [3] T. Abdeljawad and D. Baleanu, Discrete fractional differences with non-singular discrete MittagLeffler kernels, Advances in Difference Equations, 2016 (2016), doi:10.1186/s13662-016-0949-5.
  7. [4] T. Abdeljawad, Q. M. A. Mdallal and F. Jarad, Fractional logistic models in the frame of fractional
  8. operators generated by conformable derivatives, Chaos, Solitons & Fractals, 119 (2019) 94-101.
  9. [5] T. Abdeljawad, R. Mert and A. Peterson Sturm Liouville equations in the frame of fractional
  10. operators with exponential kernels and their discrete versions, Questiones Mathematicae, 42 (9)
  11. (2019) 1271-1289.
  12. [6] Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type
  13. inequality with applications, Filomat, 31 (17) (2017) 5457-5473.
  14. [7] J. Alidousti, R. K. Ghaziani and A. B. Eshkaftaki, Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann-Liouville derivatives, Turkish Journal of Mathematics,
  15. 41 (2017) 1260-1278.
  16. [8] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel:
  17. theory and application to heat transfer model, Thermal Science, 20 (2) (2016) 763-769.
  18. [9] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel,
  19. Progress in Fractional Differentiation and Applications, 1 (2) (2015) 73-85.N. Sene/ IJM2C, 10 - 01 (2020) 25-35. 35
  20. [10] J. Fahd, and T. Abdeljawad, A modified Laplace transform for certain generalized fractional
  21. operators, Results in Nonlinear Analysis, 2 (2018) 88-98.
  22. [11] Y. Y. Gambo, R. Ameen, F. Jarad and T. Abdeljawad, Existence and uniqueness of solutions to
  23. fractional differential equations in the frame of generalized Caputo fractional derivatives, Advances
  24. in Difference Equations, 2018 (2018), doi:10.1186/s13662-018-1594-y.
  25. [12] F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo
  26. modification, Journal of Nonlinear Sciences and Applications, 10 (2017) 2607-2619.
  27. [13] F. Jarad, E. U. Gurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators,
  28. Advances in Difference Equations, 2017 (2017), doi:10.1186/s13662-017-1306-z.
  29. [14] U. N. Katugampola, New approach to a generalized fractional integral, Applied Mathematics and
  30. Computation, 218 (3) (2011) 860-865.
  31. [15] C. Li, K. Chen, J. Lu and R. Tang, Stability and stabilization analysis of fractional-order linear
  32. systems subject to actuator saturation and disturbance, IFAC-PapersOnLine, 50 (1) (2017) 9718-
  33. 9723.
  34. [16] Y. Li, Y. Q. Chen, I. Podlubny and Y. Cao, Mittag-Leffler stability of fractional order nonlinear
  35. dynamic Ssystems, Automatica, 45 (8) (2009) 1965-1969.
  36. [17] A. B. Makhlouf, Stability with respect to part of the variables of nonlinear Caputo fractional
  37. differential equations, Mathematical Communications, 23 (2018) 119-126.
  38. [18] D. Matignon, Stability results for fractional differential equations with applications to control
  39. processing, Computational Engineering in Systems Applications, 2 (1996) 963-968.
  40. [19] G. Pagnini, Erdlyi-Kober fractional diffusion, Fractional Calculus and Applied Analysis, 15 (1)
  41. (2012) 117-127.
  42. [20] S. Priyadharsini, Stability of fractional neutral and integrodifferential systems, Journal of Fractional
  43. Calculus and Applications, 7 (1) (2016) 87-102.
  44. [21] D. Qian, C. Li, R. P. Agarwal and P. J. Wong, Stability analysis of fractional differential system with
  45. Riemann-Liouville derivative, Mathematical and Computer Modelling, 52 (5-6) (2010) 862-874.
  46. [22] H. Rezazadeh, H. Aminikhah and A. H. Sheikhani, Stability analysis of Hilfer fractional differential
  47. systems, Mathematical Communications, 21 (2016) 45-64.
  48. [23] M. A. F. D. Santos, Fractional Prabhakar derivative in diffusion equation with non-stochastic
  49. resetting, Physica, 1 (2019) 40-58.
  50. [24] N. Sene, Analytical solutions of Hristov diffusion equations with non-singular fractional
  51. derivatives, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2) (2019) 023112,
  52. doi:10.1063/1.5082645.
  53. [25] N. Sene, Exponential form for Lyapunov function and stability analysis of the fractional differential
  54. equations, Journal of Mathematics and Computer Science, 18 (4) (2018) 388-397.
  55. [26] N. Sene, Fractional input stability for electrical circuits described by the Riemann-Liouville and the
  56. Caputo fractional derivatives, AIMS Mathematics, 4 (1) (2019) 147-165.
  57. [27] N. Sene, Fractional input stability of fractional differential equations and its application to neural
  58. network, Discrete & Continuous Dynamical Systems - S, 13 (3) (2020) 853-865.
  59. [28] N. Sene, Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal
  60. and Fractional, 2 (2018), doi:10.3390/fractalfract2020017.
  61. [29] N. Sene, Mittag-Leffler input stability of fractional differential equations and its applications,
  62. Discrete & Continuous Dynamical Systems - S, 13 (3) (2020) 867-880.
  63. [30] N. Sene, SIR epidemic model with Mittag-Leffler fractional derivative, Chaos, Solitons & Fractals,
  64. 137 (2020), doi:10.1016/j.chaos.2020.109833.
  65. [31] N. Sene, Stability analysis of the generalized fractional differential equations with and without
  66. exogenous inputs, Journal of Nonlinear Sciences and Applications, 12 (9) (2019) 562-572.
  67. [32] N. Sene, Stokes first problem for heated flat plate with AtanganaBaleanu fractional derivative,
  68. Chaos, Solitons & Fractals, 117 (2018) 68-75.
  69. [33] Q. Song, X. Yang, C. Li, T. Huang and X. Chen, Stability analysis of nonlinear fractional-order
  70. systems with variable-time impulses, Journal of the Franklin Institute, 354 (7) (2017) 2959-2978.
  71. [34] A. Souahi, A. B. Makhlouf and M. A. Hammami, Stability analysis of conformable fractional-order
  72. nonlinear systems, Indagationes Mathematicae, 28 (6) 1265-1274 (2018).
  73. [35] H. T. Tuan and H. Trinhy, Stability of fractional-order nonlinear systems by Lyapunov direct
  74. method, arXiv:1712.02921v2 (2018).