RUSLE-based model for soil loss modeling and water erosion susceptibility mapping in the Issen basin (west-central of Morocco)
- Department of Geography, Faculty of Humanities and Social Sciences, Ibn Tofail University, Kenitra, Morocco
- Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Department of Chemistry, Faculty of Science, Mohammed V University, Agdal, Rabat, Morocco
Received: 2023-12-21
Revised: 2024-01-16
Accepted: 2024-02-01
Published in Issue 2024-11-04
Copyright (c) 2024 Mohamed Ait Haddou, Belkacem Kabbachi, Ali Aydda, Youssef Bouchriti, Jamal Mabrouki (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 270
Abstract
The Issen basin is the largest sub-catchment area in the southern edge of the Western High-Atlas
(WHA) Mountain of Morocco. This basin is characterized by flood flows, orographic and climatic
contrast and friable substrate sparsely wooded and covered by heterogeneous vegetation making
it vulnerable to soil water erosion. This study aims to evaluate soil loss and to determine the
areas susceptible to water erosion in this basin based on the Revised Universal Soil Loss Equation
(RUSLE). The RUSLE model was achieved by integrating ancillary and remote sensing data in a
Geographic Information System (GIS). The analysis of the obtained map indicates that the erosion
rate in the studied basin ranges from 0 to 401 t/ha/yr, with an average of 53 tons/ha/year and a total
sheet erosion of 6,886825.87 (tons/year). These results are concordant with the results obtained
from other parts of High-Atlas Mountain. Spatially, the erosion differs from a zone to another,
where 61.2% of the total study area is lowly to moderately susceptible to erosion (subcritical
zones), while the rest (38.8%) is highly to very highly susceptible to erosion (critical zones).
The current study indicates that the soil loss in the study area has reached an alarming level and
demands fast intervention. Consequently, the identification of critical zones in this work can be
useful to prioritize these zones in future environmental planning for treatment against soil loss.
Keywords
- Water erosion,
- Soil loss,
- RUSLE model,
- Remote sensing,
- Issen Basin,
- Morocco
References
- Abaoui, J., Ghmari, A. E., El Harti, A. E., Bachaoui, E. M., Bannari, A., & El Bouadili, A. (2005). Mapping of water erosion in mountainous areas: Case of the AïtBouGoumez watershed, High Atlas, Morocco. Estudios Geológicos, 61, 33–39. https://doi.org/10.3989/egeol.05611-240
- Ait Haddou, M., Bouchriti, Y., Ikirri, M., & others. (2023). Delineation of groundwater potential zones in a semi-arid region using remote sensing and GIS: A case study of Argana Corridor (Morocco), in advanced technology for smart environment and energy. Environmental Science and Engineering, Springer, Cham., 257–268. https://doi.org/10.1007/978-3-031-25662-2-21
- Ait Haddou, M., El Caid, M. B., Aydda, A., Bouchriti, Y., Wanaim, A., Gougueni, H., & Ezaidi, S. (2022). Fencing land impacts on plant biodiversity and argan trees dynamic in the Ida-Ou-Tanane (central western of Morocco). IOP Conference Series: Earth and Environmental Science, 1090, 012023. https://doi.org/10.1088/17551315/1090/1/012023
- Ait Haddou, M., Kabbachi, B., Aydda, A., BouchritiY, H., Gougueni, En-Naciry, M., & Aichi, A. (2022). Traditional practices: A window for water erosion management in the Argana basin (Western High Atlas Morocco). E3S Web of Conferences, 337, 02002. https://doi.org/10.1051/e3sconf/202233702002
- Ait Haddou, M., Kabbachi, B., Aydda, A., Gougni, H., & Bouchriti, Y. (2020). Spatial and temporal rainfall variability and erosivity: Case of the Issen watershed, SW-Morocco. E3S Web of Conferences, 183, 02003. https://doi.org/10.1051/e3sconf/202018302003
- Ait Haddou, M., Wanaim, A., Ikirri, M., Aydda, A., Bouchriti, Y., Abioui, M., & Kabbachi, B. (2022). Digital elevation model-derived morphometric indices for physical characterization of the Issen Basin (Western High Atlas of Morocco). Ecological Engineering & Environmental Technology, 23(5), 285–298. https://doi.org/10.12912/27197050/152161
- Alahiane, N., Elmouden, A., Aitlhaj, A., & Boutaleb, S. (2016). Small dam reservoir siltation in the Atlas Mountains of Central Morocco: Analysis of factors impacting sediment yield. Environmental Earth Sciences, 75, 1035. https://doi.org/10.1007/s12665-016-5795-y
- Amini, H., Honarjoo, N., Jalaliyan, A., Khalilizadeh, M., & Baharlouie, J. (2014). A comparison of EPM and WEPP models for estimating soil erosion of Marmeh Watershed in the South Iran. Agriculture and Forestry, 60(4), 299–315.
- Amini, S., Rafiei, B., Khodabakhsh, S., & Heydari, M. (2010). Estimation of erosion and sediment yield of Ekbatan Dam drainage basin with EPM, using GIS. Iranian Journal of Earth Sciences, 2(2), 173–180.
- Aouichaty, N., Bouslihim, Y., Hilali, S., Zouhri, A., & Koulali, Y. (2022). Estimation of water erosion in abandoned quarries sites using the combination of RUSLE model and geostatistical method. Scientific African, 16, e01153. https://doi.org/10.1016/j.sciaf.2022.e01153
- Aswathi, J., Sajinkumar, K. S., Rajaneesh, A., & al, et. (2022). Furthering the precision of RUSLE soil erosion with PSInSAR data: An innovative model. Geocarto International, 37(27), 16108–16131. https://doi.org/10.1080/10106049.2022.2105407
- Ayt Ougougdal, H., Khebiza, M. Y., Messouli, M., & Bounoua, L. (2020). Delineation of vulnerable areas to water erosion in a mountain region using SDR-InVEST model: A case study of the Ourika watershed, Morocco. Scientific African, 10, e00646. https://doi.org/10.1016/j.sciaf.2020.e00646
- Ben Mlih, Laadila, M., Kochri, A. E., El Youssi, M., El Kochri, A., & Nassili, M. (2004). Permian and Triassic synrift filling of the Tahanaout basin (High Atlas of Marrakech Morocco)geodynamics and sedimentary organization. Estudios Geológicos, 60, 123–138. https://doi.org/10.3989/egeol.04603-685
- Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 22(11), 6059–6086. https://doi.org/10.5194/hess-22-6059-2018
- Bensekhria, A., & Bouhata, R. (2022). Assessment and mapping soil water Erosion using RUSLE approach and GIS tools: Case of Oued el-Hai Watershed, Aurès West, Northeastern of Algeria. ISPRS International Journal of Geo-Information, 11(2), 84. https://doi.org/10.3390/ijgi11020084
- Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., & Panagos, P. (2015). Modelling soil erosion at European scale: Towards harmonization and reproducibility. Natural Hazards and Earth System Sciences, 15(2), 225–245. https://doi.org/10.5194/nhess-15-225-2015
- Bou-imajjane, L., & Belfoul, M. A. (2020). Soil loss assessment in Western High Atlas of Morocco: Beni Mohand Watershed study case. Applied and Environmental Soil Science, 1–15. https://doi.org/10.1155/2020/6384176
- Brahim, B., Meshram, S. G., Abdallah, D., & others. (2020). Mapping of soil sensitivity to water erosion by RUSLE model: Case of the Inaouene watershed (Northeast Morocco). Arabian Journal of Geosciences, 13, 1153. https://doi.org/10.1007/s12517-020-06079-y
- Cavallar, W. (1950). Preliminary sketch of the Soil Map of Morocco—ESDAC - European Commission.
- Ebadati, N., Shafiei Motlagh, K., Khoshmanesh, B., & Razavian, F. (2022). Estimation of erosion and sedimentation using EPM and geomorphology models in a semi-arid environment (case study: Qir, Karzin basin of Iran). In Environmental Earth Sciences (Vol. 81, p. 396). https://doi.org/10.1007/s12665-022-10521-7
- El Jazouli, A., Barakat, A., Khellouk, R., Rais, J., & El Baghdadi, M. (2019). Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment, 13, 361–374. https://doi.org/10.1016/j.rsase.2018.12.004
- Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S., & Aradi, M. (2017). USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment, 3, 873–885. https://doi.org/10.1007/s40808-017-0340-x
- Fernandez, C., Wu, J. Q., McCool, D. K., & Stöckle, C. O. (2003). Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation, 58, 128–136.
- Fistikoglu, O., & Harmancioglu, N. B. (2002). Integration of GIS with USLE in assessment of soil Erosion. Water Resources Management, 16, 447–467. https://doi.org/10.1023/A:1022282125760
- Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7, 953–961. https://doi.org/10.1016/j.gsf.2015.10.007
- Gaubi, I., Chaabani, A., Ben Mammou, A., & Hamza, M. H. (2017). A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86, 219–239. https://doi.org/10.1007/s11069-016-2684-3
- Gavrilović, S. (1972). Engineering of torrents and erosion. Journal of Construction (Special Issue)-Belgrade: Izgradnja.
- Getachew, B., Manjunatha, B. R., & Bhat, G. H. (2021). Assessing current and projected soil loss under changing land use and climate using RUSLE with Remote sensing and GIS in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Egyptian Journal of Remote Sensing and Space Science, 24, 907–918. https://doi.org/10.1016/j.ejrs.2021.10.001
- Getu, L. A., Nagy, A., & Addis, H. K. (2022). Soil loss estimation and severity mapping using the RUSLE model and GIS in Megech watershed, Ethiopia. Environmental Challenges, 8, 100560. https://doi.org/10.1016/j.envc.2022.100560
- Ghosal, K., & Das Bhattacharya, S. (2020). A review of RUSLE model. Journal of the Indian Society of Remote Sensing, 48, 689–707. https://doi.org/10.1007/s12524-019-01097-0
- Hao, H., Wang, J., Guo, Z., & Hua, L. (2019). Water erosion processes and dynamic changes of sediment size distribution under the combined effects of rainfall and overland flow. CATENA, 173, 494–504. https://doi.org/10.1016/j.catena.2018.10.029
- Haregeweyn, N., Poesen, J., Verstraeten, G., & others. (2013). Assessing the performance of a spatially distributed soil erosion and sediment delivery model (Watem/Sedem) in northern Ethiopia: Spatially distributed soil erosion and sedimentation. Land Degradation & Development, 24, 188–204. https://doi.org/10.1002/ldr.1121
- HCEFLCD. (2011). High Commission for Water and Forests and the Fight against Desertification (HCEFLCD). National Watershed Management Plan: Summary and Conclusions of the Synthesis Report.
- Javanbakht, M., Asadi, V., & Dabiri, R. (2020). Evaluation of hydrogeochemical characteristics and evolutionary process of groundwater in Jajarm Plain, northeastern Iran. Environment and Water Engineering, 6(3), 206–218. https://doi.org/10.22034/jewe.2020.232598.1366
- Jehangir Khan, M., Ghazi, S., Mehmood, M., Yazdi, A., Naseem, A. A., Serwar, U., Zaheer, A., & Ullah, H. (2021). Sedimentological and provenance analysis of the Cretaceous Moro formation Rakhi Gorge, Eastern Sulaiman Range, Pakistan. Iranian Journal of Earth Sciences, 13(4), 252–266. https://doi.org/10.30495/ijes.2021.1917721.1564
- Joghatayi, H., Dabiri, R., Moslempour, M. E., Otari, M., & Sharifiyan Attar, R. (2015). Groundwater quality assessment using the Groundwater Quality Index and GIS in Joghatay plain, NE Iran. Human & Environment, 13(4), 17–25.
- Kang, S., Zhang, L., Song, X., Zhang, S., Liu, X., Liang, Y., & Zheng, S. (2001). Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China. Hydrological Processes, 15, 977–988. https://doi.org/10.1002/hyp.191
- Khemiri, K., & Jebari, S. (2021). Water erosion assessment in watersheds of the Tunisian semi-arid area with RUSLE and MUSLE models coupled with a Geographic Information System. Cahiers Agricultures, 30, 1–11. https://doi.org/10.1051/cagri/2020048
- Kifelew, M. S., Mesalie, R. A., Shumey, E. E., Mekash, S., Fikadie, F. T., Worku, T. A., & others. (2022). Identification of erosion hot spot area using GIS and gully contribution for reservoir sedimentation in the case of Abrajit reservoir, Upper Blue Nile Basin, Ethiopia. Sustainable Water Resources Management, 8, 93. https://doi.org/10.1007/s40899-022-00680-7
- Labbaci, A., Moukrim, S., Lahssini, S., Laaribiya, S., & Alaoui, H. M. (2020). An assessment of soil erosion in Westem High Atlas of Morocco: An application to Ain Asmama site. IEEE International Conference of Moroccan Geomatics (Morgeo), IEEE, Casablanca, 2020, 1–6. https://doi.org/10.1109/Morgeo49228.2020.9121906
- Lamane, H., Moussadek, R., Baghdad, B., Mouhir, L., Briak, H., Laghlimi, M., & Zouahri, A. (2022). Soil water erosion assessment in Morocco through modeling and fingerprinting applications: A review. Heliyon, 8(8), e10209. https://doi.org/10.1016/j.heliyon.2022.e10209
- Leh, M., Bajwa, S., & Chaubey, I. (2013). Impact of land use change on erosion risk: An integrated remote sensing, geographic information system and modeling methodology: Impact of land use change on erosion risk. Land Degradation & Development, 24, 409–421. https://doi.org/10.1002/ldr.1137
- Ligonja, P. J., & Shrestha, R. P. (2015). Soil Erosion assessment in Kondoa Eroded Area in Tanzania using Universal Soil Loss Equation, Geographic information systems and socioeconomic approach. Land Degradation & Development, 26, 367–379. https://doi.org/10.1002/ldr.2215
- Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondônia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degradation & Development, 15, 499–512. https://doi.org/10.1002/ldr.634
- Meliho, M., Khattabi, A., & Mhammdi, N. (2020). Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: A case of Tensift watershed in Morocco. Environmental Earth Sciences, 79, 1–19. https://doi.org/10.1007/s12665-020-08955-y
- Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling & Software, 18, 761–799. https://doi.org/10.1016/S1364-8152(03)00078-1
- Mhangara, P., Kakembo, V., & Lim, K. J. (2012). Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environmental Earth Sciences, 65, 2087–2102. https://doi.org/10.1007/s12665-011-1190-x
- Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10, 629–641. https://doi.org/10.1080/02693799608902101
- Mukanov, Y., Chen, Y., Baisholanov, S., & others. (2019). Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophysica, 67, 921–938. https://doi.org/10.1007/s11600-019-00288-0
- Ochoa, P. A., Fries, A., Mejía, D., & others. (2016). Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. CATENA, 140, 31–42. https://doi.org/10.1016/j.catena.2016.01.011
- Olsen, P. E., Kent, D. V., Et-Touhami, M., & Puffer, J. (2003). Cyclo-, magneto-, and bio-stratigraphic constraints on the duration of the CAMP event and its relationship to the Triassic-Jurassic boundary. In: Hames W, McHone JG, Renne P, Ruppel C (eds) Geophysical Monograph Series. American Geophysical Union, Washington, DC, 7, 32.
- Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
- Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., & others. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 7, 1–12. https://doi.org/10.1038/s41598-017-04282-8
- Phinzi, K., & Ngetar, N. S. (2019). The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. International Soil and Water Conservation Research, 7, 27–46. https://doi.org/10.1016/j.iswcr.2018.12.002
- Renard, K. G. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). USA (Eds).
- Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287–306.
- Rey, F., Ballais, J. L., Marre, A., & Rovéra, G. (2004). The role of vegetation in protection against surface hydric erosion. Comptes Rendus Géoscience, 336, 991–998. https://doi.org/10.1016/j.crte.2004.03.012
- Rezapour Tabari, M. M., & Yazdi, A. (2014). Conjunctive use of surface and groundwater with inter-basin transfer approach: Case study Piranshahr. Water Resources Management, 28, 1887–1906. https://doi.org/10.1007/s11269-014-0578-2
- Sadiki, A., Bouhlassa, S., Auajjar, J., Faleh, A., & Macaire, J. J. (2004). Evaluation and cartography of erosion risks by the Universal soil loss equation using a GIS in Eastern Rif (Morocco): Case of oued Boussouab Watershed. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de La Terre, 26, 69–79.
- Saha, M., Sauda, S. S., Real, H. R. K., & Mahmud, M. (2022). Estimation of annual rate and spatial distribution of soil erosion in the Jamuna basin using RUSLE model: A geospatial approach. Environmental Challenges, 8, 1–14. https://doi.org/10.1016/j.envc.2022.100524
- Salhi, A., Benabdelouahab, T., Martin-Vide, J., Okacha, A., El Hasnaoui, Y., El Moussaoui, M., El Morabit, A., Himi, M., Benabdelouahab, S., Lebrini, Y., Boudhar, A., & Casas Ponsati, A. (2020). Bridging the gap of perception is the only way to align soil protection actions. Science of The Total Environment, 718, 137421. https://doi.org/10.1016/j.scitotenv.2020.137421
- Stanchi, S., Falsone, G., & Bonifacio, E. (2015). Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy). Solid Earth, 6, 403–414. https://doi.org/10.5194/se-6-403-2015
- Tahiri, M., Tabyaoui, H., Hammichi, F. E., Achab, M., Tahiri, A., & El Hadi, H. (2017). Quantification of water erosion and sedimentation using empirical models in the Tahaddart watershed Northwestern Rif, Morocco. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de La Terre, 39, 87–101.
- Tairi, A., Elmouden, A., Bouchaou, L., & Aboulouafa, M. (2021). Mapping soil erosion–prone sites through GIS and remote sensing for the Tifnout Askaoun watershed, southern Morocco. Arabian Journal of Geosciences, 14, 811. https://doi.org/10.1007/s12517-021-07009-2
- Talchabhadel, R., Prajapati, R., Aryal, A., & others. (2020). Assessment of rainfall erosivity (R-factor) during 1986-2015 across Nepal: A step towards soil loss estimation. Environ Monit Assess, 192, 1–17. https://doi.org/10.1007/s10661-020-8239-9
- Tixeront, M., & Duffaud, F. (1977). Geological map and mineralization of the Argana corridor, Western High Atlas. Service Géologique Du Maroc.
- Tribak, A., El Garouani, A., & Abahrour, M. (2009). Quantitative evaluation of water erosion in the marly soils of the eastern Pre-Rif (Morocco): Case of the Oued Tlata sub-basin. Sécheresse, 20, 333–337.
- Ustaoğlu, B., İkiel, C., Atalay Dutucu, A., & Koç, D. E. (2021). Erosion susceptibility analysis in Datça and Bozburun Peninsulas, Turkey. Iranian Journal of Science and Technology, Transactions A: Science, 45, 557–570. https://doi.org/10.1007/s40995-020-01053-5
- Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil Erosion Risk Assessment in Europe- ESDAC- European Commission.
- Wischmeier, W. H., & Smith, D. D. (1978). Predicting Rainfall Erosion Losses: A guide to conservation planning. USDA agricultural handbook. U.S. Gov. Print. Office, Washington, DC., 537.
- Zhao, X., Dupont, L., Cheddadi, R., Kölling, M., Reddad, H., Groeneveld, J., Ain-Lhout, F. Z., & Bouimetarhan, I. (2019). Recent climatic and anthropogenic impacts on endemic species in southwestern Morocco. Quaternary Science Reviews, 221, 105889. https://doi.org/10.1016/j.quascirev.2019.105889