10.57647/j.ijes.2025.17008

Mineralogical Characteristics and Surface Texture of Quartz Grains in Coastal Sabkha Deposits on the Southern Red Sea

  1. Marine Geology Department, Faculty of Marine Science and Environment, Hodeidah University, Yemen
  2. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah. Saudi Arabia
  3. Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia

Received: 2024-11-08

Revised: 2025-01-01

Accepted: 2025-01-27

Published 2025-07-05

How to Cite

Wasel, S. O., Al-Dubai, T. A., Al-Zubieri, A., & Al Thabiani, A. (2025). Mineralogical Characteristics and Surface Texture of Quartz Grains in Coastal Sabkha Deposits on the Southern Red Sea . Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.17008

PDF views: 56

Abstract

Surface sediment samples from Yakhtul sabkha, located within a local depression east of the Red Sea in Yemen, were analyzed by X-ray diffraction analysis and scanning electron microscopy to determine the mineralogical composition and microtextures of quartz grain surfaces of recent coastal sabkha sediments. Eleven surface sediment samples were collected from the sabkha for this study. The results revealed that X-ray diffraction analysis identified the mineral components in the sabkha sediments, including evaporate minerals such as gypsum, anhydrite, and halite. These minerals indicate the arid conditions prevalent in this coastal environment. Carbonate minerals such as calcite, aragonite, and dolomite were also identified. Conversely, non-evaporite minerals were also identified, including quartz, plagioclase, and orthoclase. The microtextural features of the quartz grains were characterized by a dominance of surface-chemical features generally developed by precipitation and dissolution of recent silica in the near-surface diagenetic environment. In Addition, surface features such as upturned plates, V-shaped pits, elongated depressions, conchoidal fractures, and straight-curved grooves indicate prevailing mechanical processes. Analyzing the surface features of quartz grains using a scanning electron microscope provides significant interpretations of the environmental conditions the grains encountered, allowing inferences about the sediment source.

Keywords

  • Yakhtul sabkha,
  • Mineralogy,
  • SEM,
  • Red Sea Coast,
  • Yemen

References

  1. Abu-zeid M. M., Baghdady, A. R., El-Etr, H. A. (2001) Textural attributes , mineralogy and provenance of sand dune fields in the greater Al Ain area , United Arab Emirates. Journal of Arid Environments 48: 475–499. DOI: https://doi.org/10.1006/jare.2000.0776
  2. Al-Aydrus,A. A., Wasel, S. O., Al-Wosabi, M. A. (2023) Microtextures on Quartz Grain Surfaces in the Beach Sediments of Southern Hodeidah, Red Sea Coast, Yemen. Sana’a University Journal of Applied Sciences and Technology 1(2). DOI: https://doi.org/10.59628/jast.v1i2.205
  3. Al-Dubai T. A., Abu-Zied, R. H., Basaham, A.S. (2017) Present environmental status of Al-Kharrar Lagoon, central of the eastern Red Sea coast, Saudi Arabia. Arabian Journal of Geosciences 10: 1–18. DOI: https://doi.org/10.1007/s12517-017-3083-0
  4. Al-Dubai T. A., Antoni, S., Al-Zubieri, A. G., Majeed, J. (2017) Composition and characteristic of the surficial sediments in the southern corniche of Jeddah, Red Sea coast. Journal of Geoscience, Engineering, Environment, and Technology 2(1): 39–45. DOI: https://doi.org/10.24273/jgeet.2017.2.1.19
  5. Al-Dubai T. A., Bantan, R. A., Abu-Zied, R. H., Al-Zubieri, A. G., Jones, B. G. (2022) Distribution of Benthic Foraminifera in Intertidal Sabkha of Al-Kharrar Lagoon, Saudi Arabia: Tools to Study Past Sea-Level Changes. Frontiers in Marine Science 9: 843758. DOI: https://doi.org/10.3389/fmars.2022.843758
  6. Al-Saleh S., Khalaf, F. I. (1982) Surface Textures of Quartz Grains from Various Recent Sedimentary Environments in Kuwait. Journal of Sedimentary Research 52(1): 215–225. DOI: https://doi.org/10.1306/212f7f18-2b24-11d7-8648000102c1865d
  7. Al Buloshi, A., Gheith, A. (2022) Quartz grain microtextures and textural parameters as indicators of the sedimentary cycles in the Wahiba Sands dunes , Sultanate of Oman. Arabian Journal of Geosciences 15: 1–9. DOI: https://doi.org/10.1007/s12517-022-10454-2
  8. Alanazi H. A., Ghrefat, H. A. (2013) Spectral analysis of multispectral Landsat 7 ETM+ and ASTER data for mapping land cover at Qurayah Sabkha, Northern Saudi Arabia. Journal of the Indian Society of Remote Sensing 41: 833–844. DOI: https://doi.org/10.1007/s12524-013-0291-2
  9. Aref, M. A. M., Basyoni, M. H., Bachmann, G. H. (2014) Microbial and physical sedimentary structures in modern evaporitic coastal environments of Saudi Arabia and Egypt. Facies 60: 371–388. DOI: https://doi.org/10.1007/s10347-013-0379-8
  10. Aref M. A. M., Taj, R. J. A. (2013) Recent analog of gypsified microbial laminites and stromatolites in solar salt works and the Miocene gypsum deposits of Saudi Arabia and Egypt. Arabian Journal of Geosciences 6: 4257–4269. DOI: https://doi.org/10.1007/s12517-012-0684-5
  11. Aref M. A., Mannaa, A. A. (2021) Formation and evolution of efflorescent halite speleothems beneath tepee structures in the Red Sea coastal evaporation settings , Jeddah , Saudi Arabia. Sedimentary Geology 414: 1–21. DOI: https://doi.org/10.1016/j.sedgeo.2020.105828
  12. Aref, M. A., Taj, R. J. (2017) Hydrochemical characteristics of sabkha brines, evaporite crystallization and microbial activity in Al-Kharrar sabkha and their implication on future infrastructures in Rabigh area, Red Sea coastal plain of Saudi Arabia. Environmental Earth Sciences 76: 1–18. DOI: https://doi.org/10.1007/s12665-017-6686-6
  13. Aref, M. A., Taj, R. J. (2018) Recent evaporite deposition associated with microbial mats , Al ‑ Kharrar supratidal – intertidal sabkha , Rabigh area , Red Sea coastal plain of Saudi Arabia. Facies 64(28): 1–23. DOI: https://doi.org/10.1007/s10347-018-0539-y
  14. Aref M., Attia, O., Wali, A. (1997) Facies and depositional environment of the Holocene evaporites in the Ras Shukeir area, Gulf of Suez, Egypt. Sedimentary Geology 110: 123–145. DOI: https://doi.org/10.1016/S0037-0738(96)00080-2
  15. Arjmandzadeh R., Teshnizi E.S., Ahmadi A.A., Mahdavi A., Tavsoli S., Dabiri R. (2020) The mineralogy, geochemistry and genesis of Aghol-Messi sedimentary copper - uranium deposit, Tabas block, Central Iran. Researches in Earth Sciences 11(4):47-70. DOI: https://doi.org/10.52547/esrj.11.4.47
  16. Armstrong-altrin J. S., Natalhy-pineda, O. (2014) Microtextures of detrital sand grains from the Tecolutla , Nautla , and Veracruz beaches , western Gulf of Mexico , Mexico : implications for depositional environment and paleoclimate. Arabian Journal of Geosciences 7(10): 4321–4333. DOI: https://doi.org/10.1007/s12517-013-1088-x
  17. Armstrong J. S., Mayla, A., Vázquez, A. R., Madhavaraju, J., Verma, S. K. (2022) Quartz grain microtextures in the Boca del Cielo and Chocohuital beaches in the Mexican Pacific , Chiapas state : implication on paleoenvironment. Arabian Journal of Geosciences 1–11. DOI: https://doi.org/10.1007/s12517-022-10334-9
  18. Ashrafi, N; Dabiri, R and Jahangiri, A. (2024) Some chemical variations in biotite, phlogopite, and muscovite, considering their tectonic setting. Geopersia 14(2): 307-32. DOI: https://doi.org/10.22059/geope.2024.373882.648749
  19. Bantan R. A., Abu-Zied, R. H. (2014) Sediment characteristics and molluscan fossils of the Farasan Islands shorelines, southern Red Sea, Saudi Arabia. Arabian Journal of Geosciences 7: 773–787. DOI: https://doi.org/10.1007/s12517-013-0851-3
  20. Bantan R. A., Abu-Zied, R. H., Al-Dubai, T. A. (2019) Late Holocene Environmental Changes in a Sediment Core from Al-Kharrar Lagoon, Eastern Red Sea Coast, Saudi Arabia. Arabian Journal for Science and Engineering 44(7): 6557–6570. DOI: https://doi.org/10.1007/S13369-019-03958-9/METRICS
  21. Basyoni M. H., Aref, M. A. (2016) Composition and origin of the Sabkha brines, and their environmental impact on infrastructure in Jizan area, Red Sea Coast, Saudi Arabia. Environment and Earth Science 75(2): 105. DOI: https://doi.org/10.1007/s12665-015-4913-6
  22. Braissant O. Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., Visscher, P. T. (2007) Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4): 401–411. DOI: https://doi.org/10.1111/j.1472-4669.2007.00117.x
  23. Chen P. Y. (1977) Table of key lines on X-ray powder Diffraction patterns of Minerals in clays and associated rocks. Department of Natural Resources Geological survey paper 21.
  24. Chen R., Chen, J., Ma, J., Cui, Z. (2019) Quartz grain surface microtextures of dam-break flood deposits from a landslide-dammed lake: A case study. Sedimentary Geology 383: 238–247. DOI: https://doi.org/10.1016/j.sedgeo.2019.02.010
  25. Cuadrado, D. G., Perillo, G. M. E., Vitale, A. J. (2014) Modern microbial mats in siliciclastic tidal flats: Evolution, structure and the role of hydrodynamics. Marine Geology 352: 367–380. DOI: https://doi.org/10.1016/j.margeo.2013.10.002
  26. El-Anbaawy M. I. H. (1985) Geology of Yemen Arab Republic. 303p.
  27. El-younsy A. R., Essa, M. A., Wasel, S. O. (2017) Sedimentological and geoenvironmental evaluation of the coastal area between Al-Khowkhah and Al-Mokha, southeastern Red Sea , Republic of Yemen. Environmental Earth Sciences 76: 1–22. DOI: https://doi.org/10.1007/s12665-016-6355-1
  28. El Abd,Y. I., Awad, M. B. (1991) Evaporitic sediment distributions in Al-Kharrar sabkha, west Red Sea coast of Saudi Arabia, as revealed from electrical soundings. Marine Geology 97(1–2): 137–143. DOI: https://doi.org/10.1016/0025-3227(91)90023-W
  29. Fang X., Mou, Y., Xi, X. (1987) Quartz grain surface features of the Maxian mountain in Lanzhou area and environment identification. Journal of Glaciology and Geocryology 9(3): 251–256. DOI: https://doi.org/10.7522/j.issn.1000-0240.1987.0031
  30. Gavish E. (1974) Geochemistry and mineralogy of a recent sabkha along the coast of Sinai, Gulf of Suez. Sedimentology 21(3): 397–414. DOI: https://doi.org/10.1111/j.1365-3091.1974.tb02067.x
  31. Geukens F. P. (1966) Geology of the Arabian Peninsula: Yemen. U.S. Geological Survey, 560-B, 23.
  32. Ghandour I. M., Al-Zubieri, A. G., Basaham, A. S., Mannaa, A. A., Al-Dubai, T. A., Jones, B. G. (2021) Mid-late Holocene paleoenvironmental and sea level reconstruction on the Al Lith Red Sea coast, Saudi Arabia. Frontiers in Marine Science 8: 677010. DOI: https://doi.org/10.3389/fmars.2021.677010
  33. Goudie A. S., Wells, G. L. (1995) The nature, distribution and formation of pans in arid zones. Earth-Science Reviews 38(1): 1–69. DOI: https://doi.org/10.1016/0012-8252(94)00066-6
  34. Guagliardi I., Rovella, N., Apollaro, C., Bloise, A., Rosa, R. De, Scarciglia, F., Buttafuoco, G. (2016) Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy. Journal of Earth System Science 125: 1569–1578. DOI: https://doi.org/10.1007/s12040-016-0758-y
  35. Haldar S. K. (2020) Sedimentary rocks. In (Haldar S. K. (ed.); Second Edi) Introduction to Mineralogy and Petrology. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-820585-3.00006-5
  36. Haldar S. K., Tišljar, J. (2014) Sedimentary Rocks. In Haldar J. T. S.K. (Ed.), Introduction to Mineralogy and Petrology. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-408133-8.00005-5
  37. Handford C. R. (1982) Sedimentology and evaporite genesis in a Holocene continental‐sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29(2): 239–253. DOI: https://doi.org/10.1111/j.1365-3091.1982.tb01721.x
  38. Higgs R. (1979) Quartz-Grain Surface Features of Mesozoic-Cenozoic Sands from the Labrador and Western Greenland Continental Margins. Journal of Sedimentary Petrology 49(2): 599–610. DOI: https://doi.org/10.1306/212f779d-2b24-11d7-8648000102c1865d
  39. Hossain H. M. Z., Armstrong-altrin, J. S., Hena, A., Jamil, N., Rahman, M. (2020) Microtextures on quartz grains in the Kuakata beach , Bangladesh : implications for provenance and depositional environment. Arabian Journal of Geosciences 13(291): 1–12. DOI: https://doi.org/10.1007/s12517-020-5265-4
  40. Hossain H. M. Z., Tarek, M., Armstrong-Altrin, J. S., Monir, M. M. U., Ahmed, M. T., Ahmed, S. I., Hernandez-Coronado, C. J. (2014) Microtextures of detrital sand grains from the cox ’ s bazar beach , Bangladesh : Implications for provenance and depositional environment. Carpathian Journal of Earth and Environmental Sciences 9(3): 187–197. DOI: https://api.semanticscholar.org/CorpusID:203078581
  41. Jehangir Khan M., Ghazi S., Mehmood M., Yazdi A., Naseem A.A., Serwar U., Zaheer A., Ullah H. (2021) Sedimentological and provenance analysis of the Cretaceous Moro formation Rakhi Gorge, Eastern Sulaiman Range, Pakistan. Iranian Journal of Earth Sciences 13(4): 252-266. DOI: https://doi.org/10.30495/ijes.2021.1917721.1564
  42. Kalińska-Nartiša E., Woronko, B., Ning, W. (2017) Microtextural Inheritance on Quartz Sand Grains from Pleistocene Periglacial Environments of the Mazovian Lowland , Central Poland. Permafrost and Periglacial Processes 28: 741–756. DOI: https://doi.org/10.1002/ppp.1943
  43. Kendall A. C. (2005) Sedimentary Rocks| Evaporites. In Richard C. Selley and L. Robin M. Cocks and Ian R. Plimer (Ed.), Encyclopedia of Geology, Five Volume Set. Elsevier. DOI: https://doi.org/10.1007/978-3-319-39193-9_100-1
  44. Kinsman D. J. (1969) Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites. AAPG Bulletin 53(4): 830–840. DOI: https://doi.org/10.1306/5D25C801-16C1-11D7-8645000102C1865D
  45. Kleesment A. (2009) Roundness and surface features of quartz grains in Middle Devonian deposits of the East Baltic and their palaeogeographical implications. Estonian Journal of Earth Sciences 58(1): 71–84. DOI: https://doi.org/10.3176/earth.2009.1.07
  46. Krinsley D., Friend, P., Klimentidis, R. (1976) Eolian transport textures on the surface of sand grains of Early Triassic age. Geological Society of America Bulletin 87(1): 130–132. DOI: https://doi.org/10.1130/0016-7606(1976)87<130:ETTOTS>2.0.CO;2
  47. Krinsley D. H., Doornkamp, J. C. (1973) Atlas of sand grain surface textures. Cambridge University Press, Cambridge, 91.
  48. Krinsley D. H., Doornkamp, J. C. (2011) Atlas of quartz sand surface textures (Cambridge U. Press (eds.); First) Cambridge University Press. https://books.google.com.sa/books?id=yzbKMHzYgPsC
  49. Kumar A., Khan, M. A., Muqtadir, A. (2011) Distribution of Mangroves along the Red Sea Coast of the Arabian Peninsula: Part-3: Coast of Yemen. Earth Science India 4(11): 29–38. DOI: https://doi.org/Corpus ID: 130831025
  50. Li Z., Yu, X., Dong, S., Chen, Q., Zhang, C. (2020) Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment : A case study in the hinterland of the Badain Jaran Desert , Northwest China. Aeolian Research 43: 100573. DOI: https://doi.org/10.1016/j.aeolia.2020.100573
  51. Madhavaraju J., Armstrong-altrin, J. S., Selvaraj, K., Arthur, R. (2022) Microtextures on quartz grains from the Gulf of Mexico and the Mexican Paci fi c coastal sediments : Implications for sedimentary processes and depositional environment. Journal of Palaeogeography 11(2): 256–274. DOI: https://doi.org/10.1016/j.jop.2022.04.001
  52. Mahaney W. (2002) Atlas of Sand Grain Surface Textures and Applications. Oxford University Press. DOI: https://doi.org/OL9223201W
  53. Mahaney W. C. (1998) Scanning electron microscopy of Pleistocene sands from Yamal and Taz peninsulas, Ob River estuary, northwestern Siberia. Quaternary International 45: 49–58. DOI: https://doi.org/10.1016/S1040-6182(97)00006-2
  54. Mahaney W. C., Dirszowsky, R. W., Milner, M. W., Menzies, J., Stewart, A., Kalm, V., Bezada, M. (2004) Quartz microtextures and microstructures owing to deformation of glaciolacustrine sediments in the northern Venezuelan Andes. Journal Of quaternary science 19(1): 23–33. DOI: https://doi.org/10.1002/jqs.818
  55. Mahaney W. C., Hancock, R. G. V, Milan, A., Pulleyblank, C., Costa, P. J. M., Milner, M. W. (2014) Reconstruction of Wisconsinan-age ice dynamics and compositions of southern Ontario glacial diamictons, glaciofluvial/lacustrine, and deltaic sediment. Geomorphology 206: 421–439. DOI: https://doi.org/10.1016/j.geomorph.2013.10.014
  56. McKenzie J. A., Vasconcelos, C. (2009) Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56(1): 205–219. DOI: https://doi.org/10.1111/j.1365-3091.2008.01027.x
  57. Mollai H., Pe-Piper G., Dabiri R. (2014) Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran. Geologica Carpathica 65(3):207-225
  58. Ramos-vázquez M. A., Armstrong-Altrin, J. S. (2021) Microtextures on quartz and zircon grain surfaces in the Barra del Tordo and Tesoro beaches , northwestern Gulf of Mexico. Arabian Journal of Geosciences 14(949): 1–12. DOI: https://doi.org/10.1007/s12517-021-07333-7
  59. Rushdi A., Abubaker, M., Hebba, H. (1994) Marine Habitats of the Red Sea at Alurj-Alsalif and Dubab-Yakhtul areas: Ecology, Environment and Management Recommendations. In Dept. of Oceanography, Faculty of Science, Sana’a University, Republic of Yemen, and UNDP.
  60. Sánchez-Román M., Gibert, L., Martín-Martín, J. D., van Zuilen, K., Pineda-González, V., Vroon, P., Bruggmann, S. (2023) Sabkha and salina dolomite preserves the biogeochemical conditions of its depositional paleoenvironment. Geochimica et Cosmochimica Acta 356: 66–82. DOI: https://doi.org/10.1016/j.gca.2023.06.031
  61. Sánchez-Román M., McKenzie, J. A., Wagener, A. de L. R., Romanek, C. S., Sánchez-Navas, A., Vasconcelos, C. (2011a) Experimentally determined biomediated Sr partition coefficient for dolomite: Significance and implication for natural dolomite. Geochimica et Cosmochimica Acta 75(3): 887–904. DOI: https://doi.org/10.1016/j.gca.2010.11.015
  62. Suzuki Y., Iryu, Y., Inagaki, S., Yamada, T., Aizawa, S., Budd, D. A. (2006) Origin of atoll dolomites distinguished by geochemistry and crystal chemistry: Kita-daito-jima, northern Philippine Sea. Sedimentary Geology 183(3–4): 181–202. DOI: https://doi.org/10.1016/j.sedgeo.2005.09.016
  63. Thomas D. S. G. (2011) Arid zone geomorphology: process, form and change in drylands. John Wiley Sons. DOI: /https://doi.org/10.1002/9780470710777.ch18
  64. Tucker M. E. (1988) Techniques in Sedimentology. Blackwell Scientific Publications 396p.
  65. Tucker M. E. (2001) Sedimentary Petrology–An Introduction to the Origin of Sedimentary Rocks. 3rd . Blackwell." Scientific publication. London, 284 p.
  66. Udayaganesan P., Angusamy, N., Gujar, A, R., Rajamanickam, G, V. (2011) Surface Microtextures of Quartz Grains from the Central Coast of Tamil Nadu. Journal Geological Society of India 77: 26–34. DOI: https://doi.org/10.1007/s12594-011-0005-8
  67. Vos K., Vandenberghe, N., Elsen, J. (2014) Surface textural analysis of quartz grains by scanning electron microscopy ( SEM ): From sample preparation to environmental interpretation. Earth Science Reviews 128: 93–104. DOI: https://doi.org/10.1016/j.earscirev.2013.10.013
  68. Wang L., Liu, B., Bai, L., Yu, Z., Huo, Q., Gao, Y. (2024) Pore evolution modeling in natural lacustrine shale influenced by mineral composition: Implications for shale oil exploration and CO2 storage. Advances in Geo-Energy Research 13(3): 218–230. DOI: https://doi.org/10.46690/ager.2024.09.07
  69. Warren J. K., Warren, J. K. (2016) Sabkhas, saline mudflats and pans. Evaporites: A Geological Compendium 207–301. DOI: https://doi.org/10.1007/978-3-319-13512-0_3
  70. Wasel S. O. (2008) Sedimentological and Geoenvironmental evaluation of the coastal area between Al-Khowkhah and Al-Mokha, Red Sea, Republic of Yemen. Unpublished. Ph. D. Thesis, Assiut University. 215 p.
  71. Wasel S. O. (2012) Microtextures of Quartz Grain Surface from Recent Sedimentary Environments along Al-Khowkhah-Area, Al-mokha Coastal Sea, Southern Red,Yemen. Journal of King Abdulaziz University, Marine Sciences 23(1): 93–107. DIO: https://doi.org/Corpus ID: 182294828
  72. Wasel S. O., Albadran, B. N. (2024) Mineralogy and Geochemistry of Coastal Sabkha Deposits Along Yakhtul Coast, Red Sea, Yemen. Iraqi National Journal of Earth Science 24(1): 16–35. DOI: https://doi.org/10.33899/earth.2023.139633.1066
  73. Wilson M. A., Shahid, S. A., Abdelfattah, M. A., Kelley, J. A., Thomas, J. E. (2013) Anhydrite Formation on the Coastal Sabkha of Abu Dhabi, United Arab Emirates, In Shahid S. A., F. K. Taha, M. A. Abdelfattah (eds.), Developments in Soil Classifi cation, Land Use Planning and Policy Implications,. Springer Netherlands, p. 175–201. DOI: https://doi.org/10.1007/978-94-007-5332-7_8