10.57647/j.ijes.2025.17007

Provenance, palaeoclimate, and tectonic setting of the Shishtu-1 Formation (Late Devonian) in East-Central Iran: Based on geochemical evidence

  1. Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Received: 2024-11-13

Revised: 2025-01-16

Accepted: 2025-03-08

Published 2025-07-05

How to Cite

Kianpour, S., Khanehbad, M., Mahmoudy Gharaie, M. H., & Moussavi-Harami, R. (2025). Provenance, palaeoclimate, and tectonic setting of the Shishtu-1 Formation (Late Devonian) in East-Central Iran: Based on geochemical evidence. Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.17007

PDF views: 42

Abstract

The Shishtu-1 Formation in the Central Iran region developed during the Late Devonian with a succession of carbonate and siliciclastic rocks. The current study focuses on siliciclastic intervals to detect provenance, tectonic settings, palaeoclimatic conditions, and palaeogeographic reconstruction. Sandstones and shales were investigated separately in this study. According to petrographic and geochemical studies, the sandstones are quartzarenite and sublitharnite. The geochemical analysis revealed that SiO2, Al2O3, and Fe2O3 are the most abundant oxides in the samples of the study area. Also, trace elements such as Ba, Cr, Sr, V & Zr have a high concentration. The changes in these elements in the geochemical log can indicate the palaeoclimatic and palaeoenvironmental conditions. According to the SEM analysis, the presence of zircon, ilmenite, and clay minerals, especially illite, have been confirmed in the clastic rocks of the Shishtu-1 Formation, which indicates the existence of a warm climate. Based on geochemical studies, the sediments of the Shishtu-1 Formation originated from deeply weathered felsic to intermediate igneous rocks under oxic conditions, and shallow marine and deltaic environments. Source rocks of the Shishtu-1 Formation show a passive continental margin setting, suggesting tectonic quiescence during the Late Devonian.

Keywords

  • Siliciclastic rocks,
  • Shishtu-1 Formation,
  • Late Devonian,
  • Provenance,
  • Tectonic setting

References

  1. Abasaghi F., Mahboubi A., Mahmoudi Gharaei M.H., Khanehbad M. (2023) Palaeogeographic and palaeoclimatic reconstruction of the Permian sediments in the Alborz basin, Iran: sedimentological and geochemical approaches. Journal of African Earth Sciences 200:104-121. http://doi.org/10.1016/j.jafrearsci.2023.104861
  2. Abasaghi F., Mahboubi A., Mahmudi Gharaie M. H., Khanehbad M. (2022) Mineralogy and geochemistry of Permian-Triassic lateritic-bauxitic horizons, eastern and central Alborz, Iran: Implications for provenance, palaeogeography, and palaeoclimate. Geological Journal 58:170-194. http://doi.org/10.1002/gj.4585
  3. Abdulfarraj M., R., Alqahtani F., A., Hamdalla Wanas A. (2024) Petrography and geochemistry of sandstones of the Ash Shumaysi Formation in the Jeddah-Makkah region, Saudi Arabia: Implications for provenance, tectonic setting, paleoweathering, paleoclimate and paleogeography. Sedimentary Geology 460:106549. https://doi.org/10.1016/j.sedgeo.2023.106549
  4. Agard P., Monie P., Gerber W., Omrani J., Molinaro M., Meyer B Labrousse L., Vrielynck B., Jolivet L., Yamato P. (2006) Transient, syn-obduction exhumation of Zagros blueschists inferred from P–T-deformation-time and kinematic constraints: implications for Neotethyan wedge dynamics. Journal of Geophysical Research 111(B):114-124. http://doi.org/10.1029/2005JB004103
  5. Alavi M. (1994) Tectonics of Zagros Orogenic Belt of Iran, New Data and Interpretation. Tectonophysics, 229:211-238. https://doi.org/10.1016/0040-1951(94)90030-2
  6. Algeo T. J., Scheckler S. E., Maynard J. B. (2001) Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate. In: Gensel, P.G., Edwards, D. (Eds.), Plants Invade the Land, Evolutionary and Environmental Perspectives. Columbia University Press, New York, 213–236. https://doi.org/10.1017/S001675680325812X
  7. Anderson M. E., Almond J. E., Evans F. J., Long J. A. (1999) Devonian (Emsian-Eifelian) fish from the Lower Bokkeveld Group (Ceres Subgroup), South Africa. Journal of African Earth Sciences 29:179-193. https://doi.org/10.1017/S001675680325812X
  8. Anjerdi J., Jafarzadeh M., Najafzadeh A., Mahari R. (2022) Provenance of Upper Devonian Ilanqareh Formation (NW Iran), assessed using petrography and major element geochemistry: Boletín de la Sociedad Geológica Mexicana, 74(3):160-172. http://dx.doi. org/10.18268/BSGM2022v74n3a160722
  9. Aretz M. (2020) Late Devonian extinction. In: Reference Module in Earth Systems and Environmental Sciences. Paul Sabatier University - Toulouse III. 57:120-134. https://doi.org/10.1016/B978-0-12-409548-9.12453-4
  10. Armas P., Moreno C., Sánchez M. L., González F. (2014) Sedimentary palaeoenvironment, petrography, provenance and diagenetic inference of the Anacleto Formation in the Neuquén Basin, Late Cretaceous, Argentina. Journal of South American Earth Sciences 53:59-76. https://doi.org/10.1016/j.jsames.2014.03.004
  11. Armstrong Altrin J. S., Lee Y. I., Verma S. P., Ramasamy S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research 74:285–297. https://doi.org/10.1306/082803740285
  12. Armstrong-Altrin J.S. (2015) Evaluation of two multi-dimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review 57:1446–1461. https://doi.org/10.1080/00206814.2014.936055
  13. Artemieva I. M., and Shulgin A. (2015) Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift? Precambrian Research 259:4-42. https://doi.org/10.1016/j.precamres.2014.08.011
  14. Ashouri A. (2006) Icriodus and Polygnathus (Conodonts) from the Late Devonian of Eastern Iran, and Middle-Late Devonian of Northern Iran. Iranian International Journal of Science 32: 39-67. https://doi.org/10.1014/ 2006.09.012
  15. Bahrami A., Corradini C., Over D. J., Yazdi M. (2013) Conodont biostratigraphy of the Upper Frasnian-Lower Famennian transitional deposits in the Shotori Range, Tabas area, Central-east Iran Microplate: Bulletin of Geoscience 88(2):369-388. https://doi.org/10.3140/bull.geosci.1353
  16. Bahrami A., Gholamalian H., Corradini C., Yazdi M. (2011) Upper Devonian Conodont Biostratigraphy of Shams-abad section, Kerman province, Iran: Revista Italiana di Paleontologia e Stratigrafia 117(2):199-209. https://doi.org/10.13130/2039-4942/5971
  17. Baiyegunhi T. M., Liu K., Gwavava O., Baiyegunhi C., Rapholo M. (2021) Geochemistry of the mudrocks and sandstones from the Bredasdorp Basin, offshore South Africa: Implications for tectonic provenance and palaeoweathering. Open Geosciences 13:1187–1225. https://doi.org/10.1515/geo-2020-0260
  18. Bambach R. K., Knoll A. H., Wang S. C. (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522-542. https://doi.org/10.1666/0094-8373(2004)030<0522: OEAMDO>2.0.CO;2
  19. Bhatia M. R. (1983) Plate tectonics and geochemical composition of sandstones. Journal of Geology 91:611–627. http://dx.doi.org/10.1086/628815
  20. Bhatia M. R., Crook A. W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution Mineralogy Petroleum 92:181–193. https://doi.org/10.1007/BF00375292
  21. Bond D., Wignall P. B. (2005) Evidence for late Devonian (Kellwasser) anoxic events in the Great Basin, western United States. Developments in Palaeontology and Stratigraphy 20:225-262. https://doi.org/10.1016/S0920-5446(05)80009-3
  22. Bracciali L., Marroni M., Pandolfi L., and Rocchi S. (2007) Geochemistry and petrography of western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source areas to configuration of margins. Geological Society of America Special Paper 420:73-93. http://dx.doi.org/10.1130/2006.2420(06)
  23. Carmichael S. K., Waters J. A., Königshof P., Suttner T. J., Kido E. (2019) Palaeogeography and palaeoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression. Global and Planetary Change 183:102-184. https://doi.org/10.1016/j.gloplacha.2019.102984
  24. Chakrabarti G., Shome D., Sekhar Reddy C., and Sinha S. (2016) Provenance and Tectonic Setting of the late Paleoproterozoic Clastic Sedimentary Rocks of the Cuddapah Basin, South India. Research Journal of Chemical Sciences 6(10):1-7. https://doi.org/10.1007/s43217-021-00059-2
  25. Collins A.S., Patranabis-Deb S., Alexander E., Bertram C.N., Falster G.M., Gore R.J., Mackintosh J., Dhang P.C., Saha D., Payne J.L., Jourdan F. (2015) Detrital mineral age, radiogenic isotopic stratigraphy and tectonic significance of the Cuddapah Basin, India. Gondwana Research, 28(4):1294-1309. https://doi.org/10.1016/j.gr.2014.10.013
  26. Cullers R. L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203. https://doi.org/10.1016/S0024-4937(99)00063-8
  27. Cullers R.L., Podkovyrov V.N. (2000) Geochemistry of Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research 104:77-93. https://doi.org/10.1016/S0301-9268(00)00090-5
  28. De Vleeschouwer D., Crucifix M., Bounceur N., Claeys P. (2014) The impact of astronomical forcing on the Late Devonian greenhouse climate. Global and Planetary Change 120:65-80. https://doi.org/10.1016/j.gloplacha.2014.06.002
  29. Dhannoun, H.Y., Al-Dlemi, R.M.S. (2013) The relation between Li, V, P2O5, and Al2O3 contents in marls and mudstones as indicators of environment of deposition. Arabian Journal of Geosciences 6:817-823. https://doi.org/10.1007/s12517-011-0399-z
  30. Dickins J. M. (1993) Climate of the Late Devonian to Triassic. Palaeogeography Palaeoclimatology Paleoecology 100:89–94. https://doi.org/10.1016/0031-0182(93)90034-G
  31. Dickinson W. R. (1985) Interpreting Provenance Relations from Detrital Modes of Sandstones, in Zuffa G.G. (ed.), Provenance of Arenites. Springer, Dordrecht 333-363. https://doi.org/10.1007/978-94-017-2809-6_15
  32. Do Campo M., Guevara S. R. (2005) Provenance analysis and tectonic setting of late Neoproterozoic metasedimentary successions in NW Argentina. Journal of South American Earth Sciences 19:143-153. https://doi.org/10.1016/j.jsames.2005.01.003
  33. Eghbali M., Hamdi B., Majidifard M. (2020) Biostratigraphy of Shishtu-1 Formation in the Howz-e-Dorah section based on Conodonts (southeast Tabas). Researches in Earth Sciences 42:143-158 (In Persian). https://doi.org/10.52547/esrj.11.2.143
  34. Fan S., Qin F., Che Z. (2024) Geochemical indicators to constrain weathering, provenance and tectonic setting of the Pisha sandstone (Early-Middle Triassic) in Northeast Ordos Basin, China. Heliyon 10:291-320. https://doi.org/10.1016/j.heliyon.2024.e29120
  35. Fatima S., Khan M. S. (2012) Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution. International Geology Review 54(10):1113-1144. https://doi.org/10.1080/00206814.2011.623032
  36. Fedo C. M., Nesbitt H. W., Young G. M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and palaeosols, with implications for palaeoweathering conditions and provenance. Geology 23:921–924. https://doi.org/10.1130/0091-7613(1995)023<0921: UTEOPM>2.3.CO;2
  37. Floyd P. A., Leveridge B. E. (1987) Tectonic Environment of the Devonian Gramscatho Basin South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society (London) 144:531-542. https://doi.org/10.1144/gsjgs.144.4.0531
  38. Folk R. L. (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, Texas, 182. http://hdl.handle.net/2152/22930
  39. Foster G. L., Royer D. L., Lunt D. J. (2017) Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8:148-245. https://doi.org/10.1038/ncomms14845
  40. Fralick P.W., Kronberg B.I. (1997) Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sedimentary Geology 113:111-124. https://doi.org/10.1016/S0037-0738(97)00049-3
  41. Gaillardet J., Dupré B., Allègre C.J. (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta 63:4037-4051. https://doi.org/10.1016/S0016-7037(99)00307-5
  42. Galy V., France-Lanord C., Beyssac, O., Faure P., Kudrass H., Palhol F. (2007) Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450(7168):407-410. https:// doi.org/10.1038/nature06273
  43. Ganai J. A., Rashid S. A., Siddiqui A. S., Absar N., Heena Jeelani G. (2023) Understanding the provenance and depositional conditions of Triassic sedimentary rocks from the Spite region, Tethys Himalaya, India. Journal of Asian Earth Sciences: 9:100-154. https://doi.org/10.1016/j.jaesx.2023.100154
  44. Ganapati R., Reddy K.S.N., Sekhar R., Bangaku N., Murali K., Reddy G.V.R. (2019) Provenance Studies of Ilmenite from Red Sediments, Thamminapatnam Coast, East Coast of India. Journal Geological Society of India 93:101-108. https://doi.org/ 10.1007/s12594-019-1128-6
  45. Garzanti E., Padoan M., Setti M., Peruta L., Najman Y., Villa I.M. (2013) Weathering geochemistry and Sr-Nd isotope fingerprinting of equatorial upper Nile and Congo muds. Geochemistry, Geophysics, Geosystems 14:292-316. https://doi.org/10.1002/ggge.20060
  46. Garzanti E., Resentini A. (2015) Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology 336:81–95. https://doi.org/10.1016/j.sedgeo.2015.06.013
  47. Golonka J. (2007) Phanerozoic palaeoenvironment and paleolithofacies maps. Late Paleozoic. Geologia 33:145-209. https://www.researchgate.net/publication/234000853
  48. Golonka J. (2020) Late Devonian palaeogeography in the framework of global plate tectonics. Global and Planetary Change 186:103-129. https://doi.org/10.1016/j.gloplacha.2020.103129
  49. Gromet L.P., Dymek R.E., Haskin L.A., Korotev R.L. (1984) The “North American Shale Composite”: Its Composition, Major and Trace Element Charactecristics. Geochimica et Cosmochimica Acta 48, 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
  50. Gu X, X., Liu J. M., Zheng M. H., Tang J. X., Qi L. (2002) Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China, geochemical evidence. Journal of Sedimentary Research 72:393–407. https://doi.org/10.1306/081601720393
  51. Han Z., Dai S., Jia H., Liu T., Jiang Z. (2022) Tectonic controls on geomorphological dynamics and sediment dispersal in source-to-sink systems in the Qingdong sag, Bohai Bay basin. Australian Journal of Earth Sciences 69:1012-1029. https://doi.org/10.1080/08120099.2022.2059782
  52. Harnois L. (1988) The C.I.W. index: a new chemical index of weathering. Sedimentology Geology 55:319–322. https://doi.org/10.1016/0037-0738(88)90137-6
  53. Hashmie, A., Rostamnejad, A., Nikbakht, F., Ghorbanie, M., Rezaie, P., Gholamalian H. (2015) Depositional environments and sequence stratigraphy of the Bahram Formation (middle-late Devonian) in north of Kerman, south-central Iran. Geoscience Frontiers 20:1-14. http://dx.doi.org/10.1016/j.gsf.2015.07.002
  54. Hatch J. R., Leventhal J. S. (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology 99:65-82. https://doi.org/10.1016/0009-2541(92)90031-Y
  55. Hayashi K., Fujisawa H., Holland H., Ohmoto H. (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochem. Cosmochim. Acta 61:4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7
  56. Herron M. M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58:820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D
  57. Heydari E. (2008) Tectonic versus Eustatic Control on Super sequences of the Zagros Mountains of Iran. Tectonophysics 451:56-70. https://doi.org/10.1016/j.tecto.2007.11.046
  58. Huang C., Joachimski M. M. and Gong Y. (2018) Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ18OPO4 record from South China. Earth and Planetary Science Letters 495:174-184. https://doi.org/10.1016/j.epsl.2018.05.016
  59. Jehangir Khan M., Ghazi S., Mehmood M., Yazdi A., Naseem A.A., Serwar U., Zaheer A., Ullah H. (2021) Sedimentological and provenance analysis of the Cretaceous Moro formation Rakhi Gorge, Eastern Sulaiman Range, Pakistan. Iranian Journal of Earth Sciences 13(4): 252-266. DOI: https://doi.org/10.30495/ijes.2021.1917721.1564
  60. Joachimski M. M., Breisig S., Buggisch W., Talent J. A., Mawson R., Gereke M., Morrow J. R., Day J., Weddige K. (2009) Devonian climate and Reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284:599-609. https://doi.org/10.1016/j.epsl.2009.05.028
  61. Jones B., Manning D. A. C. (1994) Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology 111: 111-129. https://doi.org/10.1016/0009-2541(94)90085-X
  62. Karimian Torghabeh A., Mahmudy Gharaie M. H., Abioui M. (2022) Petrography and geochemistry of Late Devonian sandstones (Shishtu Formation): Middle East central Iran. Rendiconti Lincei Scienze Fisiche e Naturali 33:771-783. https://doi.org/10.1007/s12210-022-01094-5
  63. Khanehbad M., Moussavi‐Harami R., Mahboubi A., Nadjafi M. (2012) Geochemistry of Carboniferous Shales of the Sardar Formation, East Central Iran: Implication for Provenance, Palaeoclimate and Palaeooxygenation Conditions at a Passive Continental Margin: Geochemistry International 50(9):777-79. https://doi.org/10.1134/S0016702912090029
  64. Kheyrollahim H., Alinia F., Ghods A. (2021) Regional magnetic and gravity structures and distribution of mineral deposits in Central Iran: Implications for mineral exploration, Journal of Asian Earth Sciences 217:104-228. https://doi.org/10.1016/j.jseaes.2021.104828
  65. Königshof P., Bahrami A., Kaiser S. I. (2021) Devonian-Carboniferous boundary sections in Iran. Paleobiodiversity and Palaeoenvironments 101:613-632. https://doi.org/10.1007/s12549-020-00438-z
  66. Kroonenberg S. B. (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: 29th International Geology Congress 10(A):69–81. https://www.researchgate.net/publication/40207477
  67. Le Bas M. J., Le Maitre R. W., Streckeisen A., Zanettin B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27:745-750. https://doi.org/10.1093/petrology/27.3.745
  68. Li Q., Liu S., Han B. F., Zhang J., Chu Z. Y. (2011) Geochemistry of metasedimentary rocks of the Proterozoic Xingxingxia complex: implications for provenance and tectonic setting of the eastern segment of the Central Tianshan Tectonic Zone, northwestern China. Canadian Journal of Earth Sciences 42:287-306. https://doi.org/10.1139/e05-011
  69. Ma K., Hinnov L., Zhang X., Gong Y. (2022) Astronomical climate changes trigger Late Devonian bio- and environmental events in South China. Global and Planetary Changes 215:103-174. https://doi.org/10.1016/j.gloplacha.2022.103874
  70. Madukwe, H. Y., Akinmosin, A., Akinyemi, S. A., Adebayo, O. F., Aturamu, A. O., Ojo, A.O. (2014) Provenance, Tectoning Setting and maturity of the Ishara Sandstones, South Western, Nigeria: Insight from major elements geochemistry. International Journal of Current Research 6(12):11123-11133. https://doi.org/10.2375/03.2014.02
  71. Madukwe, H. Y., Akinmosin, A., Akinyemi, S. A., Adebayo, O. F., Aturamu, A. O., Ojo, A.O. (2014) Provenance, Tectonic setting and maturity of the Ishara Sandstones, South Western, Nigeria: Insight from major elements geochemistry. International Journal of Current Research 6:12,11123-11133. https://doi.org/10.2122/140417
  72. Maffre P., Goddéris Y., Pohl A., Donnadieu Y., Carretier S., Le Hir G. (2022) The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian. American Journal Science 322(3):461–492. https://doi.org/10.2475/03.2022.02
  73. McGhee G. (1996) The Late Devonian mass extinction. New York: Columbia University Press. ISBN: 9780231075046.378 Pages. Format: Hardcover.
  74. McLennan S. M. (2001) Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2:1021-1024. https://doi.org/10.1029/2000GC000109
  75. McLennan S. M., Taylor S. R. (1991) Sedimentary-rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology 99:1–21. https://doi.org/10.1086/629470
  76. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson M.J., Basu A. (Eds.), Processes controlling the composition of clastic sediments. Geological Society of America, Special Papers 85:21-40. https://doi.org/10.1130/SPE284-p21
  77. Metcalfe I. (2011) Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research 79:3-21. https://doi.org/10.1016/j.gr.2010.02.016
  78. Miall A. D. (2006) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, New York, 582.
  79. Morton A. C., Chenery S. (2009) Detrital Rutile Geochemistry and Thermometry as Guides to Provenance of Jurassic-Paleocene Sandstones of the Norwegian Sea. Journal of Sedimentary Research 79:540-553. https://doi.org/10.2110/jsr.2009.054
  80. Morton A.C. (1991) Geochemical studies of detrital heavy minerals and their application to provenance research. Geological Society, London, Special Publications 57:31-45. https://doi.org/10.1144/GSL.SP.1991.057.01.04
  81. Mount J. (1985) Mixed siliciclastic and carbonate sediments: a proposed first-order textural compositional classification. Sedimentology 32:435-442. https://doi.org/10.1111/j.1365-3091.1985.tb00522.x
  82. Muttoni G., Gaetani M., Kent D. V., Sciunnach D., Angiolin L., Berra F., Garzanti E., Mattei M., Zanchi A. (2009) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14(A):17–48. https://doi.org/10.2113/geoarabia140417
  83. Nadimi A. (2007) Evolution of the Central Iranian basement. Gondwana Research 12:324-333. https://doi.org/10.1016/j.gr.2006.10.012
  84. Nesbitt H. W., Young G. M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48:1523-1534.https://doi.org/10.1016/0016-7037(84)90408-3
  85. Nesbitt H. W., Young G. S. (1982) Early Proterozoic climates and motions inferred from major element chemistry of lutites. Nature 299:715–717. https://doi.org/10.1038/299715a0
  86. Pettijohn F. J., Potter P. E., Siever R. (1987) Sand and Sandstone. Springer-Verlag, Berlin https://doi.org/10.1007/978-1-4612-1066-5
  87. Pier J. Q., Brisson S. K., Beard J. A., Hren M. T., Bush A. M. (2021) Accelerated mass extinction in an isolated biota during Late Devonian climate changes. Scientific Reports 11:243-266. https://doi.org/10.1038/s41598-021-03510-6
  88. Rasmussen C., Brantley S., Richter D., Blum A., Dixon J., White A. F. (2011) Strong climate and tectonic control on plagioclase weathering in granitic terrain. Earth and Planetary Science Letters 301(3-4):521-530. https://doi.org/10.1016/j.epsl.2010.11.037
  89. Ratcliffe K., Morton A. C., Ritcey D. H., Evenchick C. A. (2007) Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools in the Bowser and Sustut basins, British Columbia, Canada. Bulletin of Canadian Petroleum Geology 55:320 – 336. https://doi.org/10.2113/gscpgbull.55.4.320
  90. Roser B. P., Korsch R. J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio: The Journal of Geology 94:635-650. https://doi.org/10.1086/629071
  91. Roser B. P., Korsch R. J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data: Chemical Geology 67(1-2):119-139. https://doi.org/10.1016/0009-2541(88)90010-1
  92. Roy D. K., Roser B. P. (2012) Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research 23:1163-1171. https://doi.org/10.1016/j.gr.2012.07.006
  93. Roy D. K., Roser B. P. (2013) Geochemical evolution of the Tertiary succession of the NW shelf, Bengal basin, Bangladesh: Implications for provenance, palaeoweathering and Himalayan erosion. Journal of Asian Earth Sciences 78:248-262. https://doi.org/10.1016/j.jseaes.2013.04.045
  94. Sahiduzzaman M., Moksatara M. H., Mazumdar Q. H. (2024) Geochemical Characteristics of Neogene Shales form Zakiganj-1 Well at Eastern Folded Flank, Bangladesh: Implication to Delineate the Geochemical Classification, Provenance, Weathering, Climate, Maturity and Tectonic Setting. International Journal of Research Publication and Reviews 5(2):1892-1911. https://doi.org/10.55248/gengpi.5.0224.0527
  95. Saitoh Y., Tanimizu M., Ishikawa T. (2020) Sr-Nd-Pb isotope systematics from the modern rivers in SW Japan: Implications for sediment provenance of the Northwest Pacific. Journal of Asian Earth Science 3:10-29. https://doi.org/10.1016/j.jaesx.2020.100029
  96. Saleemi A. A., Ahmed Z. (2000) Mineral and chemical composition of Karak mudstone, Kohat Plateau, Pakistan: implications for smectite-illitization and provenance. Sedimentary Geology 130:229-247.https://doi.org/10.1016/S0037-0738(99)00113-X
  97. Salehi, M. A., Bahrami, A., Moharrami, S., Vaziri-Moghaddam, H., Pakzad, A. R. and Shakeri, B. (2020) Palaeoenvironmetal and sequence-stratigraphic analysis of the Middle-Late Devonian Carbonates (Bahram Formation) of Anarak, Western Central Iran. Journal of African Earth Sciences, 171:103-938. https://doi.org/10.1016/j.jafrearsci.2020.103938
  98. Salehi, M. A., Mousavi-Harami, R., Mahboubi, A., Fursich, F. T., Wilmsen, M. and Huebeck, C. (2018) A tectono-stratigraphic record of an extensional basin: the Lower Jourassic Ab-Haji Formation of east central Iran. Swiss Journal of Geosciences 111(1):51-78. https://doi.org/10.1007/s00015-017-0283-2
  99. Sattari E., Bahrami A., Königshof P., Vaziri-Moghadam H., Taheri A. (2024) Biostratigraphy and facies around the D/C boundary interval of the Tuye-Darvar section, Eastern Alborz Range, NE Iran. Boletín de la Sociedad Geológica Mexicana 76:280-224. https://creativecommons.org/licenses/by-nc-sa/4.0/
  100. Schindler E. (1993) Event-stratigraphic markers within the Kellwasser crisis near the Frasnian/Famennian boundary (upper Devonian) in Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 46:1-115. https://doi.org/10.1016/0031-0182(93)90124-2
  101. Scotese C. R., Langford R. P. (1995) Pangea and the palaeogeography of the Permian. In: Scholle P.A., Peryt T.M., Ulmer-Scholle, D.S. (Eds.), The Permian of Northern Pangea 1 Palaeogeography, Palaeoclimates, Stratigraphy. Springer, Berlin. 3–19. https://doi.org/10.1016/S1874-2734(04)80003-2
  102. Stanley S. M. (2016) Estimates of the magnitudes of major marine mass extinctions in earth history: Proceedings of the National Academy of Sciences of the United States of America. Journal of Sedimentology Geology 113:6325–6334. https://doi.org/10.1073/pnas.161309411
  103. Stöcklin J. (1968) Structural History and Tectonics of Iran: A Review. Bulletin of the American Association of Petroleum Geologists 52(7):1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
  104. Suttner L. J., Dutta P. K. (1986) Alluvial sandstone composition and palaeoclimate, Framework Mineralogy. Journal of Sedimentology Geology 56:329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D
  105. Takin M. (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150. http://dx.doi.org/10.1038/235147a0
  106. Tribovillard N., Algeo T. J., Lyons T. Riboulleau A. (2006) Trace metals as palaeoredox and palaeoproductivity proxies: an update. Chemical Geology 232:12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
  107. Tribovillard N., Desprairies A., Lallier-Vergès E, Moureau N, Ramdani A, Ramanampisoa L. (1994) Geochemical study of organic-rich cycles from the Kimmeridge Clay Formation of Yorkshire (G.B.): productivity vs. anoxia. Palaeogeography Palaeoclimatology Paleoecology 108:165–181. https://doi.org/10.1016/0031-0182(94)90028-0
  108. Wang D., Wang X. L., Zhou J. C., Shu X. J. (2013) Unraveling the Precambrian crustal evolution by Neoproterozoic conglomerates, Jiangnan orogen: U–Pb and Hf isotopes of detrital zircons. Precambrian Research 233:223-236. https://doi.org/10.1016/j.precamres.2013.05.005
  109. Wendt J., Kaufmann B., Belka Z., Farsan N., Karimi Bavandpour A. (2005) Devonian/lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran, part II, northern and central Iran. Acta Geology Paleontology 55:31- 97. https://www.researchgate.net/publication/213776066
  110. Yang J. H., Du Y. S. (2017) Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan Province, North China. Journal of Palaeogeography 6:370 – 380. https://doi.org/10.1016/j.jop.2017.08.003
  111. Yang X., Zhao Y., Guo Q., Yang H. (2012) Geochemistry of the trace elements and rare-earth elements at the boundary between Cambrian Series 2 and Series 3 at Jianshan, South China: Palaeoenvironmental and stratigraphic implications. Chinese Journal of Geochemistry 31:465-475. https://doi.org/10.1007/s11631-012-0598-7
  112. Zamandar Q. U., Renhai P., Sajid Z., Mehmood M., Wahab A., Jehangir Khan M., Latif T. (2021) The Provenance and Tectonic Settings of the Greywacke Member of the Late Neoproterozoic Hazara Formation Lesser Himalayas, Northern Pakistan: Evidence from Geochemistry and Petrography. Sains Malaysians 50:3505-3522. https://doi.org/10.17576/jsm-2021-5012-04
  113. Zhang Y. X., Zheng B., Zhang X. L., Huang P. (2023) Unraveling the Early Devonian provenance of the Longmenshan region through detrital zircon records: Implications for floral differentiation in South China. Palaeoworld. 10:120-135. https://doi.org/10.1016/j.palwor.2023.05.003
  114. Zoleikhaei Y., Amini A., Zamanzadeh S.M. (2015) Integrated provenance analysis of Zakeen (Devonian) and Faraghan (early Permian) sandstones in the Zagros belt, SW Iran: Journal of African Earth Sciences 101:148–161. https://doi.org/10.1016/j. jafrearsci.2014.09.012
  115. Zou Y., Liu D., Zhao F., Kuang H., Sun Y., Cheng J. (2019) Chemostratigraphy of the Mesoproterozoic Shennongjia Group, Yangtze Craton (South China): Implications for oxidized shallow seawaters. Journal of Asian Earth Sciences 179:399-415. https://doi.org/10.1016/j.jseaes.2019.02.026