10.57647/j.ijes.2025.17006

Petrophysical Analysis and Reservoir Characterization of Lade Field, Niger Delta, Nigeria

  1. Department of Earth Sciences, Faculty of Science, Adekunle Ajasin University, PMB 001, Akungba-Akoko, Ondo State, Nigeria

Received: 2024-11-12

Revised: 2025-01-03

Accepted: 2025-01-06

Published 2025-07-05

How to Cite

Okpoli, C. C., Odundun, O. A., Olatunji, O. A., & Jimoh, R. O. (2025). Petrophysical Analysis and Reservoir Characterization of Lade Field, Niger Delta, Nigeria. Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.17006

PDF views: 18

Abstract

This study presents a comprehensive petrophysical evaluation of two wells in LADE field located in the Niger Delta Basin. The study utilized an integrated approach for interpretation which involved the usage of GEOLOGTM and PYTHON 3.12.4 softwares. Geolog was utilized for advanced petrophysical analysis, integrating core data to enhance reservoir characterization and interpretation. Well-log data, including gamma-ray, resistivity, porosity, and permeability logs, were processed and analyzed using Python for data manipulation, statistical calculations, and visualization. The results of the study provide crucial information for reservoir characterization, reservoir modeling and decision-making processes in hydrocarbon exploration and production activities in the Niger Delta region. Reservoir sand bodies A1 and B1 within LADE-001 well   have gross thicknesses of 138.9-130.6 ft., net-pay thicknesses of 62.5-21.5 ft. and net-to-gross (N/G) ratio of 0.0215-0.165. Effective porosity stands at 24-25%, water saturation at 28-29%, hydrocarbon saturation at 72-71%, while the volume of shale stands at 7 -8%. These parameters collectively classify reservoirs A1 and B1 as robust hydrocarbon-bearing reservoir, showcasing good thickness, moderate net-to-gross, low shale volume and favorable porosity. Sand bodies in LADE-002 well revealed gross thicknesses ranging from 139-1467 ft., net-pay thicknesses of 27.5-148 ft., N/G ratio of 0.019-0.26. The values of effective porosity range from 22 -27%, with the other parameters and their ranges expressed as; water saturation: 20-34%, hydrocarbon saturation: 66-80% and volume of shale: 6-8%. Reservoirs B2, C2 and D2 are classified as robust hydrocarbon-bearing reservoir, featuring good thickness, moderate/low net-to-gross, low shale volume and favorable porosity while reservoir A2 revealed fair to good attributes due to poor net thickness, low net-to-gross, low shale volume and favorable porosity. The delineated reservoirs are characterized by favorable porosity and permeability with a high tendency to accumulate hydrocarbons and flow during production.

Keywords

  • Petrophysics,
  • Well logging,
  • Reservoir characterization,
  • Hydrocarbons,
  • Niger Delta

References

  1. Abdel-Fattah M.I., Metwalli F.I., El Sayed I.M. (2018) Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, western desert, Egypt. Journal of African Earth Sciences 138:1–13. https://doi.org/13.10.1016/j.jafrearsci.2017.11.002
  2. Abdelwahhab M. A., Radwan A. A., Mahmoud H., Mansour A. (2022) Geophysical 3D-static reservoir and basin modelling of a Jurassic estuarine system (JG-Oilfield, Abu Gharadig basin, Egypt). J. Asian Earth Sci. 225, 105067. https://doi.org/10.1016/j.jseaes.2021.105067
  3. Adewoye O., Amigun J.O., Okwoli E., Cyril A.G. (2013) Petrophysical and structural analysis of Maiti Field, Niger Delta, using well logs and 3-D seismic data. Petroleum & Coal l4 (55):302-310
  4. Ajisafe Y.C., Ako B.D. (2013) 3-D seismic attributes for reservoir characterization of “Y” field Niger Delta, Nigeria. IOSR J. Appl. Geol. Geophys. 1(2):23–31
  5. Ali M., Ma H., Pan H., Ashraf U., Jiang R. (2020) Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan. J. Pet. Sci. Eng. 194, 107461. https://doi.org/10.1016/j.petrol.2020.107461
  6. Ali N., Chen J., Fu X., Hussain W., Ali M., Hussain M., Anees A., Rashid M., Thanh H.V. (2022) Prediction of cretaceous reservoir zone through petrophysical modeling: Insights from Kadanwari gas field, middle Indus basin. Geosyst. Geoenviron. 1 (3), 100058. https://doi.org/10.1016/j.geogeo.2022.100058
  7. Avbovbo A. A. (1978) Tertiary lithostratigraphy of Niger Delta: American Association of Petroleum Geologists Bulletin, 62, 295-300.
  8. Baouche R., Nabawy B. S. (2021) Permeability prediction in argillaceous sandstone reservoirs using fuzzy logic analysis: A case study of Triassic sequences, Southern Hassi R’Mel Gas Field, Algeria. Journal of African Earth Sciences 173, 104049 https://doi.org/10.1016/j.jafrearsci.2020.104049
  9. Cherana A., Aliouane L., Doghmane M. Z., Ouadfeul S.-A., Nabawy B. S. (2022) Lithofacies discrimination of the Ordovician unconventional gas-bearing tight sandstone reservoirs using a subtractive fuzzy clustering algorithm applied on the well log data: Illizi Basin, the Algerian Sahara. Journal of African Earth Sciences 196, 104732 https://doi.org/10.1016/j.jafrearsci.2022.104732
  10. Dehghan A.N., Yazdi A. (2023) A Geomechanical Investigation for Optimizing the Ultimate Slope Design of Shadan Open Pit Mine, Iran. Indian Geotechnical Journal 1-15. DOI: http://dx.doi.org/10.1007/s40098-022-00709-w
  11. Doust H., Omatsola, E. (1990) Niger Delta. In, Edwards, J.D., and Santogrossi, P.A., eds., Divergent/passive Margin Basins, AAPG Memoir 48: Tulsa, American Association of Petroleum Geologist 239-248.
  12. Doustt H. (1989) The Niger Delta: Hydrocarbon potential of a major Tertiary delta province. In: Van der Linden, W. J. M., Cloetingh, S. A. P. L., Kaasschieter, J. P. K., Van de Graaff, W. J. E., Vandenberghe, J., Van der Gun, J. A. M. (eds) Coastal Lowlands. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1064-0_13
  13. Haque A.K.M.E., Quadri S.M.T., Bhuiyan M.A.H., Navid M., Nabawy B.S., Hakimi M.H., Abdul-El-Aal A.K. (2022) Integrated wireline log and seismic attribute analysis for the reservoir evaluation: A case study of the Mount Messenger Formation in Kaimiro Field, Taranaki Basin, New Zealand. Jourmal of Natural Gas Science and Engineering 99, Article 104452
  14. IEA (2022) World Energy Outlook 2022, IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2022, Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A)
  15. Jehangir Khan M., Ghazi S., Mehmood M., Yazdi A., Naseem A.A., Serwar U., Zaheer A., Ullah H. (2021) Sedimentological and provenance analysis of the Cretaceous Moro formation Rakhi Gorge, Eastern Sulaiman Range, Pakistan. Iranian Journal of Earth Sciences 13(4): 252-266. DOI: https://doi.org/10.30495/ijes.2021.1917721.1564
  16. Kaplan A., Lusser C. U., Norton I. O. (1994) Tectonic map of the world, panel 10: Tulsa, American Association of Petroleum Geologists, scale 1: 10,000,000
  17. Kulke H. (1995) Nigeria. In, Kulke, H., ed., Regional Petroleum Geology of the world. Part 11: Africa, America, Australia, and Antarctica: Berlin, Gebruder Borntraeger, 143-1272. 77
  18. Nabawy B. S. and El Aal A. A. (2019) Impacts of the petrophysical and diagenetical aspects on the geomechanical properties of the dolomitic sequence of Gebel El-Halal, Sinai, Egypt. Bulletin of Engineering Geology and the Environment 78 (4):2627-2640
  19. Nabawy B. S., Mansour A. S., Rashed M. A., Afify W. S. M. (2020) Implementation of sedimentary facies and diagenesis on the reservoir quality of the Aquitanian-Burdigalian Rudeis Formation in the Gulf of Suez, Egypt: A comparative surface and subsurface study. Geological Journal 55(6), 4543-4563. https://doi.org/10.1002/gj.3683
  20. Nabawy B.S., Shehata A.M. (2015) Integrated petrophysical and geological characterization for the Sidi Salem-Wakar Sandstones, off-shore Nile Delta, Egypt. Journal of African Earth Sciences 110:160-175
  21. Nwajide C. S. (2013) Geology of Nigeria’s sedimentary basins. CSS Books Ltd.
  22. Odundun O. A., Adaralewa S. S. (2016) Seismic sequences of Odun field, Niger delta: Derivation of stratigraphic and structural settings. International Basic and Applied Research Journal. 2(5): 1 -9
  23. Olufisayo I. F., Olayinka A.I, Oladunjoye M.A., Edigbue P.I. (2024) Focused reservoir characterization: analysis of selected sand units using well log and 3‑D seismic data in ’Kukih’ field, Onshore Niger Delta, Nigeria Scientific Reports 14:13763 https://doi.org/10.1038/s41598-024-56100-7
  24. Opara G. E. (1981) A review of the Tertiary Unam “B” Field in OML 67, Niger Delta. Journal of Mining and Geology. 18:86-95
  25. Pigott J.D., Williams M.T., Abdel-Fattah M., Pigott K.L. (2014) The Messinian Mediterranean crisis: a model for the Permian Delaware basin. In: Proceedings of the AAPG International Conference and Exhibition. Istanbul, Turkey.
  26. Rider M. (1986) The Geological Interpretation of Well Logs. Blackie, Glasgow
  27. Safa M. G., Nabawy B. S., Basal A. M. K., Omran M. A., Lashin A. (2021) Implementation of petrographical and petrophysical workflow protocol for studying the impact of heterogeneity on the rock typing and reservoir quality of Reefal Limestone: A case study on the Nullipore Carbonates in the Gulf of Suez, Acta Geologica Sinica (English Edition) 95(5), 1746-1762
  28. Short K.C., Stauble J. (1967) Outline of geology of the Niger Delta. AAPG Bulletin, 51(5): 761-779.