10.57647/j.ijes.2025.16976

Geology, Ore-forming Fluid Chemistry, Sr-Nd Isotopes, and Petrogenesis in the Nasim Copper Deposit, NW Bardaskan area, NE Iran

  1. Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
  2. Research Center for Ore Deposit of Eastern Iran, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
  3. Department of Mining, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
  4. Department of Geology and Petroleum Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  5. Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan

Received: 2024-08-31

Revised: 2025-02-17

Accepted: 2025-02-28

Published 2025-07-05

How to Cite

Ramezani Abbakhsh, T., Karimpour, M. H., Azizi, H., Saadat, S., Asahara, Y., & Rahimi, B. (2025). Geology, Ore-forming Fluid Chemistry, Sr-Nd Isotopes, and Petrogenesis in the Nasim Copper Deposit, NW Bardaskan area, NE Iran. Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.16976

PDF views: 80

Abstract

The Nasim copper deposit is situated in Bardaskan area, northeast of Iran. The geological units include basalt, andesite, trachyandesite, and sedimentary rocks. Conglomerate composed of volcanic fragments and nummulitic limestone has been deposited as a result of subsequent volcanic activity. The majority of trachyte to andesitic rocks that plot within the shoshonite series and exhibit high LREE/HREE and Th/Yb ratios suggest an active continental margin. Elevated Th and Nb values indicate a minor continental crustal assimilation event. Initial 87Sr/86Sr and εNd (i) of the volcanic rocks (t=40 Ma) are 0.7042 to 0.7046 and +4.96 to +5.10 in the Nasim copper deposit, which confirms that it occurred during the continental margin subduction zone. The volcanic rocks were formed in a non-marine environment, and mineralization occurred within the conglomerate bands. The Nasim copper deposit has considered as Manto-type deposit, and chalcocite mineralization occurred after the formation of the conglomerate. The absence of epidote associated with chalcocite suggests low iron content and reducing conditions in the ore-forming fluid of the Nasim deposit. Therefore, the source of mineralization is not magmatic, and further studies on the origin of this deposit should be conducted.

Keywords

  • Manto type deposit,
  • Sr-Nd isotope ratios,
  • Copper mineralization,
  • Eocene magmatism,
  • Northeast Iran

References

  1. Abalos B., Aranguren A. (1998) Anisotropy of magnetic susceptibility of eclogites: Mineralogical origin and correlation with the tectonic fabric (Cabo Ortegal, Spain). Geodinamica Acta 11(6): 271-283. DOI: https://doi.org/10.1016/S0985-3111(99)80017-5
  2. Abdolahadi A., Sheikhzakariaee S.J., Yazdi A., Mousavi S.Z. (2025) Plio-Quaternary Adakite Genesis and Post-collisional Processes: Whole Rock Constraints and Sr, Nd Isotopic Compositions in Alborz Magmatic Belt, Ardabil, Iran. Journal of Mining and Environment 16(2):737-765. DOI: https://doi.org/10.22044/jme.2024.14781.2801
  3. Aghdam S.S., Ebrahimi Nasrabadi K., Heydarian Shahri M. (2018) Manganese Mineralization of Astaj, an example of volcanic-sedimentary type mineralization in the southwest of Sabzevar. Iranian Journal of Crystallography and Mineralogy 25 (2): 411-426 (in Persian).
  4. Alizadeh E., Li H., Babazadeh S., Ma C., Forster M.W. (2023) Late Eocene slab retreat, extension, and mantle upwelling inferred from mantle signatures in potassium-rich magmatism in NE Iran. International Geology Review 65(9): 1586–1600. DOI: https://doi.org/10.1080/00206814.2023.2185823
  5. Amini Zahan H., Malekzadeh Shafaroudi A., Karimpour M.H. (2019) Mineralogy and study of fluids involved in Manto Kimia type, north-west of Bardskan, Razavi Khorasan Province. 12th National Conference of Economic Geology Association (in Persian).
  6. Arjmandzadeh R., Teshnizi E.S., Ahmadi A.A., Mahdavi A., Tavsoli S., Dabiri R. (2020) The mineralogy, geochemistry and genesis of Aghol-Messi sedimentary copper - uranium deposit, Tabas block, Central Iran. Researches in Earth Sciences 11(4):47-70. DOI: https://doi.org/10.52547/esrj.11.4.47
  7. Azizi H., Asahara Y. (2013) Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision. International Geology Review 55: 1523-1540. DOI: https://doi.org/10.1080/00206814.2013.782959
  8. Ballard JR., Palin MJ., Campbell I.H. (2002) Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile, Contrib. Mineral, Petrol 144 (3): 347–364. DOI: https://doi.org/ 10.1007/s00410-002-0402-5
  9. Boric R., Holmgren C., Wilson NSF., Zentilli M. (2002) The geology of the El Soldado Manto type Cu (Ag) deposit, central Chile. In: Porter, T. M. (Ed), Hydrothermal Iron Oxide Copper–Gold and Related Deposits. PGC Publishing, Adelaide, Australia, A Global Perspective 2: 185-205.
  10. Boveiri Konari M., Rstad E., Kojima S., Rashidnejad Omran N. (2013) Volcanic redbed-type copper mineralization in the Lower Cretaceous volcano-sedimentary sequence of the Keshtmahaki deposit, southern Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch für Mineralogie Abhandlungen 190(2): 107–121. DOI: https://doi.org/10.1127/0077-7757/2013/0236
  11. Boynton W.V. (1984) Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P. Ed. Rare earth element geochemistry, Elsevier, New York. Science Research 63-114. DOI: http://dx.doi.org/10.1016/B978-0-444-42148-7.50008-3
  12. Burnham A.D., Berry A.J. (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim, Cosmochim Acta 95: 196–212. DOI: https://doi.org/10.1016/j.gca.2012.07.034
  13. Dabiri, R., Akbari-Mogaddam, M., Ghaffari, M. (2018) Geochemical evolution and petrogenesis of the Eocene Kashmar granitoid rocks, NE Iran: Implications for fractional crystallization and crustal contamination processes. Iranian Journal of Earth Sciences 10(1):68-77.
  14. Dagva Ochira L., Oyunchimeg T.U., Enkhdalai B., Safonova I., Li. H., Otgonbaatar D., Soh Tamehea L., Sharav D. (2020) Middle Paleozoic intermediate-mafic rocks of the Tsoroidog Uul’ accretionary complex, Central Mongolia: Petrogenesis and tectonic implications. Lithos 376–377: 105795. DOI: https://doi.org/10.1016/j.lithos.2020.105795.
  15. Ebrahimi S., Arab Amiri A.R., Ghanbari H. (2018) Mineralogical Studies, Alteration, Fluid Intermediates and Stable Isotopes of Sharif Abad Copper Deposit, Bardeskan, North-East of Iran. Earth Science Quarterly 30 (117): 135-146 (in Persian).
  16. Entezarab A. (2018) Geology, Mineralogy, Geochemistry and Geophysical Data Interpretation of Ternam Copper Mine, North-West of Bardaskan. M.Sc, Thesis, Ferdowsi University of Mashhad, Mashhad, Iran. 171 p (in Persian).
  17. Entezari Harsini A., Mazaheri A., Saadat S., Santos J.F. (2017) Geochemistry, petrology, and mineralization in volcanic rocks located in south Neyshabour, NE Iran. Journal of Mining and Environment 8 (2):139-154. DOI: https://doi.org/10.1515/geochr-2015-0061
  18. Ghanbari T.M, Moghadasi S (2009) Geology of the Cheshmeh Sefid manganese deposit, Razavi Khorasan province. The 4th National Geological Conference of Payam Noor University (in Persian).
  19. Ghelichkhani M., Malekzadeh Shafaroudi A., Karimpour M.H., Homam S.M. (2021) Petrography, geochemistry and tectonic setting of NW Bardaskan volcanic rocks: a case study of Zangalou mine. Petrological Journal 12(2): 1-22 (in Persian).
  20. Ghelichkhani M., Malekzadeh Shafaroudi A., Karimpour M.H., Homam S.M. (2023) Zangalou Manto‐type deposit in the Sabzevar zone, northeast Iran: Evidence of mineralogy, geochemistry, U–Pb dating, fluid inclusion, and stable isotopes. Geological Journal 58(1): 465-496. DOI: https://doi.org/10.1002/gj.4607
  21. Golmohammadi A., Karimpour M.H., Malekzadeh Shafaroudi A., Mazaheri S.A. (2015) Mineralogy, geochemistry, and syn-mineralization intrusions age of Sangan mine: an example of giant Ca-Mg-K-rich iron skarn, Khaf, northeast of Iran. Ore Geology Reviews 65: 545-563. DOI: http://dx.doi.org/10.1016/j.oregeorev.2014.07.005
  22. Green T.H. (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology 120: 347–359. DOI: https://doi.org/10.1016/0009-2541(94)00145-X
  23. Hassanzadeh J., Ghazi A.M., Axen G., Guest B. (2002) Oligomiocene mafic-alkaline magmatism north and northwest of Iran: evidence for the separation of the Alborz from the Urumieh–Dokhtar magmatic arc. In Geological Society of America Abstracts with Programs 34 6): 331.
  24. Herazo A., Reich M., Barra F., Morata D., Real I., Pagès A. (2020) Assessing the role of bitumen in the formation of strata bound Cu-(Ag) deposit‐ its: Insights from the Lorena deposit, Las Luce's district, northern Chile. Ore Geology Reviews 124: 103639. DOI: https://doi.org/10.1016/j.oregeorev.2020.103639
  25. Hosseini R., Karimpour M.H., Malekzadeh Shafaroudi A. (2018) Petrography, geochemistry, U-Pb dating, and Sr-Nd isotopes of igneous rocks in Tannurjeh porphyry Au-Cu prospect area NE of Kashmar. Journal of Petrology 33: 45-70 (In Persian).
  26. Jabari E., Malekzadeh Shafaroudi A., Karimpour M.H. (2017) Kalabri strata-bound (M anto-type) copper deposit in Eocene volcanic-sedimentary complex of NW Bardeskan, NE Iran. Advanced Applied Geology 7(1): 1–19. DOI: HTTPS://DOI.ORG/10.22055/AAG.2017.13066
  27. Jeremy P.R. (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithose 233: 27-45. DOI: https://doi.org/10.1016/j.lithos.2014.12.011
  28. Jonidi A., Fardost F. (2017) Mineralogy, geochemistry, and genesis pattern of Rizab copper deposit, northwest of Bardeskan, Razavi Khorasan province. M. Sc, Thesis, Shahrood University of Technology, Shahrood, Iran.
  29. Karimpour M.H. (2023) Geochemistry, Genesis and Important Features of Cu-Manto Types Deposits and IOCG Type Deposits. 15th ISEG Symposium and Geological Survey, University of Damghan.
  30. Karimpour M.H., Malekzadeh Shafaroudi A., Mazloumi Bajestani A.R., Schader R.K., Stern C., Farmer L., Sadeghi M. (2017) Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide–copper–gold deposit. Journal of Geochemical Exploration 183: 58–78. DOI: https://doi.org/10.1016/j.gexplo.2017.10.001
  31. Karimpour M.H., Rezaei M., Zarasvandi A., Malekzadeh Shafaroudi A. (2021) Saveh-Nain-Jiroft Magmatic Belt replaces Urumieh-Dokhtar Magmatic Belt: Investigation of genetic relationship between porphyry copper deposits and adakitic and non-adakitic granitoids. Journal of Economic Geology 13 (3): 465-506 (in Persian).
  32. Karimpour M.H., Sadeghi M. (2019) A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on the thermal gradient of the subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran. Ore Geology Reviews 104: 522-539. DOI: https://doi.org/10.1016/j.oregeorev.2018.11.022
  33. Kojima S., Astudillo J., Rojo J., Trista D., Hayashi K. (2003) Ore mineralogy, fluid inclusion and stable isotopic characteristics of stratiform copper deposits in the coastal Cordillera of northern Chile. Mineralium Deposita 38: 208–216. DOI: https://doi.org/10.1007/s00126-002-0304-5
  34. Kojima S., Trista D., Guilera A., Hayashi K. (2009) Genetic Aspects of the Manto-type Copper Deposits Based on Geochemical Studies of North Chilean Deposits. Resource Geology 59 (1): 87 – 98. DOI: https://doi: 10.1111/j.1751-3928.2008.00081.x
  35. Le Bas M.L., Maitre R.L., Streckeisen A., Zanettin B. (1986) IUGS Subcommission on the Systematics of Igneous Rocks, A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27(3): 745-750. DOI: https://doi.org/10.1093/petrology/27.3.745
  36. Li H., Xi X.S., Sun H.S., Kong H., Wu Q.H., Wu C.M., Gabo-Ratio J.A.S. (2016) Geochemistry of the Batang Group in the Zhaokalong area, Yushu, Qinghai: Implications for the Late Triassic tectonism in the northern Sanjiang region, China. Acta Geologica Sinica (English Edition) 90: 704–721. DOI: https://doi.org/10.1111/1755-6724.12699
  37. Liu B., Kong H., Wu Q.H., Chen S.F., Li H., Xi X.S., Wu J.H., Jiang H. (2022) Origin and evolution of W mineralization in the Tongshanling Cu–polymetallic ore field, South China: Constraints from scheelite microstructure, geochemistry, and Nd–O isotope evidence. Ore Geology Reviews 143:104764. DOI: https://doi.org/10.1016/j.oregeorev.2022.104764
  38. Maghfouri S., Hosseinzadeh M.R., Moayyed M., Movahednia M., Choulet F. (2017) Geology, mineralization, and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto-type deposit, northern Zanjan, Iran. Ore Geology Reviews 81(1): 10–22. DOI: https://doi.org/10.1016/j.oregeorev.2016.10.025
  39. Maghfouri S., Rastad E., Mousivand F. (2015) Stratigraphic position, origin and characteristics of manganese mineralization horizons in the Late Cretaceous volcano-sedimentary sequence, south-southwest of Sabzevar. Developments in Economic Geology 6 (2) (in Persian).
  40. Mahvashi M, Malekzadeh Shafaroudi AM (2016) Cheshmeh Gaz (Nasim) copper deposit, NW Bardaskan: mineralogy, alteration, geochemistry, and determination of model. Iranian Journal of Crystallography and Mineralogy 3(24): 419-434 (in Persian).
  41. Mazhari N., Malekzadeh Shafaroudi A., Ghaderi M. (2015) Geology, mineralogy, and geochemistry of Ferezneh ferromanganese anomaly, east of Sangan mines complex, NE Iran. Journal of Economic Geology 7(1): 2008-7306 (in Persian).
  42. Mazloumi Bajestani A.R., Karimpour M.H., Rassa I., Rahimi B., Vosoughi Abedini M. (2008) Kuh-E-Zar Gold Deposit in Torbat-e-Heydaryeh, New model of gold mineralization. Iranian Journal of Crystallography and Mineralogy 16(3): 363-376 (in Persian).
  43. Moghadam S.H., Corfu F., Chiaradia M., Stern R.J., Ghorbani G. (2014) Sabzevar Ophiolite, NE Iran: progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos 210–211: 224–241.
  44. Mollai H., Dabiri R., Torshizian H.A., Pe-Piper G., Wang W.E. (2021) Upper Neoproterozoic garnet-bearing granites in the Zeber-Kuh region from east central Iran micro plate: Implications for the magmatic evolution in the northern margin of Gondwanaland. Geologica Carpathica 72 (6): 461-81. DOI: http://dx.doi.org/10.31577/GeolCarp.72.6.2
  45. Munizaga F., Reyes J.C., Nyström J.O. (1994) Razones isotópicas de los sulfuros del distrito minero de Cerro Negro: Un posible indicador de los depósitos estratoligados de Cu hospedados en rocas sedimentarias lacustres. Revista Geol, Chile 21: 189 –195.
  46. Najmi F., Malekzadeh Shafaroudi A., Karimpour M.H., Simon R.P. (2023) The Bahariyeh iron oxide copper–gold deposit, Khaf-Khashmar-Bardaskan magmatic belt, NE Iran: Constraints from geochemical, fluid inclusions, and O-S isotope studies. Ore Geology Reviews 159: 105501. DOI: https://doi.org/10.1016/j.oregeorev.2023.105501
  47. Najmi F., Mazhaheri A., Saadat S., Entezari Harsini A. (2016) Review of geology and geochemical exploration in Golcheshmeh Copper deposit, south of Neyshabour (NE of IRAN). Indian Journal of Fundamental and Applied Sciences 6 (1):194-205.
  48. Nasiri F., Lotfi M., Jafari M. (2010) Mineralogical studies on the Homaei manganese deposit in the southwest of Sabzevar. 30P th PSymposium on Geosciences, Geological Survey of Iran, Tehran, Iran (in Persian).
  49. Nasrollahi S., Mousivand F., Ghasemi H. (2012) Nudeh Mn deposit in the upper Cretaceous volcano-sedimentary sequence, Sabzevar subzone. 31P th Symposium on Geosciences, Geological Survey of Iran, Tehran, Iran (in Persian).
  50. Nazari M., Arian M.A., Solgi A., Zareisahamieh R., Yazdi A. (2023) Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran. Iranian Journal of Earth Sciences 15(4): 228-247. DOI: https://doi.org/10.30495/ijes.2023.1956689.1746
  51. Oliveros V., Feraud G., Aguirre L., Ramírez L.E., Fornari M., Palacios C., Parada M. (2008) Detailed 40 Ar/39 Ar dating of geologic events associated with the Mantos Blancos copper deposit, northern Chile. Mineralium Deposita 43(3): 281-293. DOI: https://doi.org/10.1007/s00126-007-0146-2
  52. Ousta S.h., Ashja-Ardalan A., Yazdi A., Dabiri R., Arian M.A. (2024) Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin. Geopersia 14 (1): 89-111. DOI: https://doi.org/10.22059/geope.2023.364334.648729
  53. Palacios C. (1986) Subvolcanic copper deposits in the coastal range of northern Chile. Zentralblatt für Geologie und Paläontologie. Teil I, H.9/10, stuttgart, 1605-1615. DOI: https://doi.org/10.1127/zbl_geol_pal_1/1985/1986/1605
  54. Papazzoni C.A., Sirotti A. (1995) Nummulite biostratigraphy at the Middle/Upper Eocene boundary in the northern Mediterranean area. Rivista Italiana di Paleontologia Stratigrafia 101 (1): 63–80. DOI: https://doi.org/ 10.13130/2039-4942/8566
  55. Papazzoni CA (1993) Macroforaminiferi di piattaforma del margine settentrionale della Tetide al limite Eocene medio-Eocene superior. Ph. D. Thesis, 240 P. DOI: https://doi.org/ 10.13140/RG.2.1.3727.5049
  56. Pearce J.A. (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100: 14–48. DOI: https://doi.org/10.1016/j.lithos.2007.06.016
  57. Peccerillo A., Taylor S.R. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology 58: 63-81. DOI: https://doi.org/10.1007/BF00384745
  58. Pollard P.J. (2006) An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Minerlium Deposita 41 (2): 179–187. DOI: https://doi.org/10.1007/s00126-006-0054-x
  59. Ramezani Abbakhsh T., Karimpour M.H., Azizi H., Rahimi B., Saadat S. (2023) Metallogeny of Manto-copper deposits, special view in Nasim copper deposit, northwest of Bardaskan, Khorasan Razavi, Journal of Economic Geology 15(1): 143-174 (in Persian).
  60. Rudnick R.L., Fountain D.M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33(3): 267-309. DOI: https://doi.org/10.1029/95RG01302
  61. Salehpour S., Arian M.A., Rad A.J., Zarei Sahamieh R., Yazdi A. (2025) Geochemistry and technomagmatic environment of Eocene volcanic rocks in Yuzbashi Chay region, west of Qazvin (Iran). Iranian Journal of Earth Sciences 17(1): 1-13. DOI: https://doi.org/10.57647/j.ijes.2025.1701.04
  62. Saric N., Kreft C., Huete C., (2003) Geología del yacimiento Lo Aguirre, Chile. Revista Geol. Chile 30: 317 –331. DOI: http://dx.doi.org/10.4067/S0716-02082003000200010.
  63. Schaub H. (1981) Nummulites et Assilines de la Téthys Paléogéne. Taxinotnie, phylogénèse et biostratigraphie. Schweizerische paläontologische Abhandlungen 104-106: 1-238.
  64. Shen P., Pan H., Li Z., Sun J., Shen Y., Li C., Feng H., Cao C. (2020) A Manto-type Cu deposit in the Central Asian Orogenic Belt: The Hongguleleng example (Xinjiang, China). Ore Geology Reviews 124 (103656)
  65. Smythe D.J., Brenan J.M. (2016) Magmatic oxygen fugacity estimated using zircon–melt partitioning of cerium. Earth Planet, Sci, Lett, 453: 260–266. DOI: https://doi.org/ 10.1016/j.epsl.2016.08.013
  66. Soltani A., Fardost F. (2016) Mineralogy, geochemistry, and genesis of Abri copper deposit, Dari and Cheshme Marzieh, northwest of Doruneh (Doctoral dissertation. M. Sc, Thesis, Shahrood University of Technology, Shahrood, Iran (in Persian).
  67. Sun S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42(1): 313-345. DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19
  68. Taghadosi H., Malekzadeh Shafaroudi A. (2018) Evidence of probable Cu-Au mineralization in Namagh area, Northeast of Kashamr: Alteration, mineralization, geochemistry and fluid inclusion studies. Scientific Quarterly Journal Geosciences 108:105-114 (In Persian).
  69. Taghizadeh S., Mousivand F., Ghasemi H. (2012) Zakeri Mn deposit, an example of exhalative mineralization in the southwest Sabzevar. 31st PSymposium on Geosciences, Geological Survey of Iran, Tehran, Iran (in Persian).
  70. Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi., Y, Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., Fujimaki H., Shinjo R., Asahara Y., Tanimizu M., Dragusanu C. (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology 168: 279–281. DOI: https://doi.org/10.1016/S0009-2541(00)00198-4
  71. Tosdal R.M., Munizaga F. (2003) Lead sources in Mesozoic and Cenozoic Andean ore deposits, north-central Chile (30–34°S). Mineralium Deposita 38: 234-250. DOI: https://doi.org/10.1007/s00126-002-0307-2
  72. Trail D., Watson E.B., Tailby N.D. (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim, Cosmochim, Acta 97: 70–87. DOI: https://doi. org/10.1016/j.gca.2012.08.032
  73. Whitney D.L., Evans B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist 95(1): 185–187. DOI: https://doi.org/ 10.2138/am.2010.3371
  74. Wilson N.S., Zentilli M. (2006) Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile. International Journal of Coal Geology, 65(1-2): 158-169. DOI: https://doi.org/10.1016/j.coal.2005.04.012
  75. Wilson N.S., Zentilli M., Spiro B. (2003) A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado manto-type copper deposit, Chile: the essential role of bacteria and petroleum. Economic Geology 98(1): 163-174. DOI: https://doi.org/10.2113/gsecongeo.98.1.163
  76. Wu J., Kong H., Li H., Algeo T.J., Yonezu K., Liu B., Wu Q., Zhu D., Jiang H. (2021) Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geology Reviews 139: 104521. DOI: https://doi.org/10.1016/j.oregeorev.2021.104521