Provenance and Depositional Environments of the Paleocene Kerman Formation in Central Iran
- Department of Geology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran
- Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
Received: 2024-08-31
Revised: 2024-10-19
Accepted: 2024-10-25
Published 2025-07-05
Copyright (c) -1 Seyyedeh Halimeh Hashemi Azizi, Payman Rezaee, Hosein Askari (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 68
Abstract
This paper discussed the depositional environment and provenance analysis of the siliciclastic rocks of the Kerman Formation for the first time. To determine the Kerman Formation’s depositional environment and provenance sedimentological, petrographic, and geochemical investigations have been conducted accordingly. The Kerman Formation (~1017 m-thick), lithologically consisting of massive polymictic conglomerates interbedded with some minor sandstone layers, is well-exposed in NE Central Iran. Through detailed sedimentological studies, six lithofacies were recognized: matrix-supported massive conglomerate, matrix-supported conglomerate, clast-supported massive conglomerate, clast-supported crudely bedded conglomerate, horizontal bedded coarse to fine-grained sandstone, and massive coarse to fine-grained sandstone. The lithofacies associations of Gmm, Gmg, Gcm, and Sm are related to sedimentary gravity flow architectural elements and the lithofacies associations of Gh and Sh are related to channel-fill sandstone bodies architectural elements deposited in alluvial fan and braided fluvial systems. Petrographically, the Kerman Formation’s conglomerate is categorized as a petromict conglomerate, and the sandstone is divided into volcanic arenite and feldspathic litharenite petrofacies. Gravels are made up mainly of basalt and andesite, as well as fewer limestone and agglomerated tuff. The sandstone plot on the QtFRF suggests that the sandstone of the Kerman Formation derived from volcanic lithic fragments. Geochemical analysis indicates a volcanic arc source area in an active margin tectonic setting, which can relate to the Sabzevar oceanic closure (a branch of Neotethys) volcanic activities. Low values of the Chemical Index of Alteration suggest cool and arid climate conditions alongside a near absence of intense alteration and recycled materials.
Keywords
- Bardaskan,
- Fluvial architecture,
- Geochemistry,
- Paleogene,
- Terrestrial environment
References
- Abdel-Fattah ZA., Sehsah H. (2023) The Upper Neoproterozoic lacustrine-fan delta depositional systems associated with braided alluvial fans in the Nubian Shiels, Egypt, Sedimentary Geology 452:106426. https://doi.org/10.1016/j.sedgeo.2023.106426
- Aghanabati A. (2004) Geology of Iran (3rd ed), Ministry of Industry and Mine, Geological Survey of Iran (Farsi).
- Akarish A. M., El-Gohary A. M. (2008) Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: Implications for provenance and tectonic setting, Journal of African Earth Sciences 52:4354. https://doi.org/10.1016/j.jafrearsci.2008.04.002
- Angiolini L., Gaetani M., Muttoni G., Stephenson M. H., Zanchi A. (2007) Tethyan oceanic currents and climate gradients 300 m.y. ago, Geology 35:10711074. https://doi.org/10.1130/G24031A.1
- Armstrong-Altrin J. S., Machain-Castillo M. L., Rosales-Hoz L., Carranza-Edwards A., Sanchez-Cabeza J. A., Ruíz-Fernández A. C. (2015) Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis, Continental Shelf Research 95:1526. https://doi.org/10.1016/j.csr.2015.01.003
- Berberian M., King G. C. P. (1981) Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences 18(2):210265. https://doi.org/10.1139/e81-019
- Bhatia M. R. (1983) Plate tectonics and geochemical composition of sandstones, Journal of Geology 91:611627. https://doi.org/10.1086/628815
- Bilal A., Mughal M. S., Janjuhah H. T., Ali J., Niaz A., Kontakiotis G., Antonarakou A., Usman M., Hussain S. A., Yang R. (2022) Petrography and Provenance of the Sub-Himalayan Kuldana Formation: Implications for Tectonic Setting and Palaeoclimatic Conditions, Minerals 12:794. https://doi.org/10.3390/min12070794
- Bilal A., Yang R., Lenhardt N., Han Z., Luan X. (2023) The Paleocene Hangu Formation: a key to unlocking the mysteries of Paleo-Tethys tectonism, Marine and Petroleum Geology 157:106508. https://doi.org/10.1016/j.marpetgeo.2023.106508
- Boggs S. J. (2009) Petrology of sedimentary rocks, Cambridge University Press. https://doi.org/10.1017/CBO9780511626487
- Bröcker M., Omrani H., Berndt J., Moslempour M. E. (2021) Unravelling metamorphic ages of suture zone rocks from the Sabzevar and Makran areas (Iran): Robust age constraints for the larger Arabia–Eurasian collision zone, Journal of Metamorphic Geology 39:10991129. https://doi.org/10.1111/jmg.12603
- Cox R., Lowe D. R. (1995) A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sediment cover, Journal of Sedimentary Research 65:112. https://doi.org/10.1306/D4268009-2B26-11D7-8648000102C1865D
- Critelli S., Ingersoll R.V. (1995) Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep-marine sandstone of the Topanga Group (Southern California), Sedimentology 42:783804. https://doi.org/10.1111/j.1365-3091.1995.tb00409.x
- Critelli S., Marsaglia K. M., Busby C. J. (2002) Tectonic history of a Jurassic backarc basin sequence (the Gran Cañon Formation) based on compositional modes of tuffaceous deposits, Geological Society of America, Bulletin 114:515527. https://doi.org/10.1130/0016-7606(2002)114<0515:THOAJB>2.0.CO;2
- Cui X., Shi L., Tang X., Wang Z., Wang J., Cheng L., Li L., Wang B., Han X., Zhang K. (2024) Provenance and tectonic settings of the lower Permian siliciclastic rocks in central Inner Mongolia: Implications for the evolution of the Paleo-Asian Ocean, Marine and Petroleum Geology 161:106641. https://doi.org/10.1016/j.marpetgeo.2023.106641
- Dickinson W. R., Beard L. S., Brakenridge G. R., Erjavec J. L., Ferguson R. C., Inman K. F., Knepp R. A., Lindberg F. A., Ryberg P. T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting, The Geological Society of America, Bulletin 94:222235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
- Fedo C. M., Nesbitt H. W., Young G. M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology 23:921924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
- Folk R. L. (1980) Petrology of sedimentary rocks, Texas: Hemphill Publishing Co. https://doi.org/2152/22930
- Gagnon J. F., Waldron J. W. F. (2011) Sedimentation styles and depositional processes in a Middle to Late Jurassic slope environment, Bowser Basin, northwestern British Columbia, Canada, Marine and Petroleum Geology 28:698715. https://doi.org/10.1016/j.marpetgeo.2010.06.004
- GhasemShirazi B., Bakhshandeh L., Yazdi A. (2014) Paleoecology of Upper Cretaceous Sediments in Central Iran, Kerman (Bondar- e Bido Section) Based on Ostracods. Marine Science 4 (2): 49-57. DOI: http://dx.doi.org/10.5923/j.ms.20140402.04
- Ghosh S. (2014) Palaeogeographic significance of ferruginous gravel lithofacies in the Ajay- Damodar interfluve, West Bengal, India, International Journal of Geology, Earth and Environmental Sciences 4:81–100.
- Ghoshal S., Allan James L., Singer M. B., Aalto R. (2010) Channel and Floodplain change analysis over a 100-year period: lower Yuba River, California, Remote Sensing 2:17971825. https://doi.org/10.3390/rs2071797
- Hashemi Azizi S. H., Rezaee P., Askari H. (2024) Reconstruction of depositional environment of the Paleocene siliciclastic depositions (Kerman Formation) in the northeast of Central Iran (Kashmar area) using lithofacies and petrofacies, Applied Sedimentology (Farsi) 23:175–188. https://doi.org/10.22084/psj.2024.29062.1429
- Hashemi Azizi S. H., Rezaee P., Jafarzadeh M., Meinhold G., Moussavi Harami S. R., Masoodi M. (2018) Early Mesozoic sedimentary-tectonic evolution of the Central-East Iranian microcontinent: evidence from a provenance study of the Nakhlak Group, Geochemistry 78:340–355. https://doi.org/10.1016/j.chemer.2018.06.003
- Huckriede R., Kursten M., Venzlaff H. (1962) Zur Geologie des Gebietes zwischen Kerman und Sagand (Iran). Geologisches Jahrbuch; Niedersächs, Hannover, Germany: Landesamt f. Bodenforschung 51:197.
- Ingersoll R. V., Bullard T. F., Ford R. L., Grimm J. P., Pickle J. D., Sares S. W. (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method, Journal of Sedimentary Petrology 54:103116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
- Jafari H.R., Yazdi A. (2014) Radioactive Anomalies in 1: 50000 Dehbakri Sheet, South of Kerman Province, Iran. Open Journal of Geology 04(08):399-405. DOI: http://dx.doi.org/10.4236/ojg.2014.48031
- Kostic B., Bech A., Aigner T. (2005) 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implication for hydrostratigraphy, Sedimentary Geology 181:143171. https://doi.org/10.1016/j.sedgeo.2005.07.004
- Lee K., Gihm Y. S. (2023) Downstream changes in floodplain sedimentation and their effects on channel avulsion in stream-dominated alluvial fans: The Cretaceous Duwon Formation in the southern Korean Peninsula, Sedimentary Geology 465:106473. https://doi.org/10.1016/j.sedgeo.2023.106473
- Marsaglia K. M., Barone M., Critelli S., Busby C., Fackler-Adams B. (2016) Petrography of volcaniclastic rocks in intra-arc volcano-bounded to fault-bounded basins of the Rosario segment of the Lower Cretaceous Alisitos oceanic arc, Baja California, Mexico, Sedimentary Geology 336:138146. https://doi.org/10.1016/j.sedgeo.2015.11.008
- McCall G. J. I. L. (1985) Explanatory text of the Tahruie quadrangle map 1:250,000, Geological Survey of Iran 14:454.
- McLennan S. M., Hemming S., McDaniel D. K., Hanson G. N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson M. J., Basu A., eds. Processes Controlling the Composition of Clastic Sediments (Special Paper 284), Geological Society of America 2140. https://doi.org/10.1130/SPE284-p21
- Miall A. D. (1977) A review of the braided river depositional environment, Earth Science Reviews 13:162. https://doi.org/10.1016/0012-8252(77)90055-1
- Miall A. D. (1978) Lithofacies types and vertical profile models in braided river deposits. In: Miall A. D., eds. Fluvial Sedimentology, Calgary, Canadian Society of Petroleum Geology, Memoir 5:597604.
- Miall A. D. (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits, Earth Science Reviews 22:261308. https://doi.org/0012-8252/85
- Miall A. D. (2000) Principles of Sedimentary Basin Analysis. Berlin, Springer. https://doi.org/10.1007/978-3-662-03999-1
- Miall A. D. (2006) The geology of fluvial deposits, sedimentary facies, basin analysis, and petroleum geology (4th corrected printing), Springer. https://doi.org/3-540-59186-9
- Nesbitt H. W., Young G. M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature 299:715717. https://doi.org/10.1038/299715a0
- Nesbitt H. W., Young G. M., McLennan S. M., Keays R. R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies, Journal of Geology 104:525542. https://doi.org/10.1086/629850
- Nichols G. (2009) Sedimentology and stratigraphy, Oxford: Wiley and Blackwell. ISBN-13: 978-1405135924
- Omrani H., Moazzen M., Oberhänsli R., Altenberger U., Lange M. (2013) The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction, International Journal of Earth Sciences, 102:14911512. https://doi.org/10.1007/s0053 1-013-0881-9
- Oplustil S., Martinek K., Tasaryova Z. (2005) Facies and architectural analysis of fluvial deposits of the Nyrany Member and the Tynec, Bulletin of Geosciences 80(1):45–66. ISSN 1214-1119
- Pettijohn F. J., Potter P. E., Siever R. (1987) Sand and Sandstone, New York, Springer-Verlag. https://doi.org/10.1007/978-1-4612-1066-5
- Potter E. P., Maynard J. B., Depetris P. J. (2005) Mud and Mudstone: Introduction and Overview, Berlin, Springer-Verlag. https://doi.org/10.1007/b138571
- Roser B. P., Coombs D. S., Korsch R. J., Campbell J. D. (2002) Whole-rock geochemical variation and evolution of the arc-derived Murihiku Terrane, New Zealand, Geological Magazine 139:665685. https://doi.org/10.1017/S0016756802006945
- Rossetti F., Nasrabady M., Vignaroli G., Theye T., Gerdes A., Razavi M. H., Vaziri H. M. (2010) Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): Implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran, Terra Nova, 22(1):2634. https://doi.org/10.1111/j.1365-3121.2009.00912.x
- Rudnick R. L., Gao S. (2003) Composition of the continental crust. In: Holland H. D., Turekian K. K., eds. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 164. https://doi.org/10.1016/B0-08-043751-6/03016-4
- Sallam E. S., Garzanti E., Li X., Ruban D. A. (2022) Provenance of Mesozoic sandstones from the northwestern Gulf of Suez, Egypt: new evidence from petrography and whole-rock geochemistry, Arabian Journal of Geosciences 15:1004. https://doi.org/10.1007/s12517-022-10256-6
- Sallam E. S., Ruban D. A. (2021) Provenance, tectonic setting and source area palaeoweathering of the Lower Cretaceous Nubian sandstones at Gebel Duwi, Eastern Desert, Egypt: inferences from mineralogy and whole-rock geochemistry, Arabian Journal of Geosciences 14:2400. https://doi.org/10.1007/s12517-021-08743-3
- Sallam E. S., Wanas H. A. (2019) Petrography and geochemistry of the Jurassic siliciclastic rocks in the Khashm El-Galala area (NW Gulf of Suez, Egypt): Implication for provenance, tectonic setting and source area paleoweathering, Journal of African Earth Sciences 160:103607. https://doi.org/10.1016/j.jafrearsci.2019.103607
- Sangeeta A., Kingson O., Yadav B. S., Pandey N., Meitei N. R. (2023) Geochemistry of the siliciclastic sediments in the Barak basin, Indo-Burma Range, India: Insights into provenance, paleoclimate, and depositional history, Journal of Asian Earth Sciences X, 10:100161. https://doi.org/10.1016/j.jaesx.2023.100161
- Seyed-Emami K. (1972) Upper Cretaceous in Iran. Journal of the College of Engineering (Farsi) 22:734.
- Shafaii Moghadam H., Corfu F., Chiaradia M., Stern R. J., Ghorbani G. (2014) Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data, Lithos, 210211: 224241. https://doi.org/10.1016/j.lithos.2014.10.004
- Shafaii Moghadam H., Zaki Khedr M., Arai S., Stern R. J., Ghorbani G., Tamura A., Ottley C. (2015) Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for the formation of podiform chromitites, Gondwana Research, 27:575593. https://doi.org/10.1016/j.gr.2013.09.007
- Shahrabi M. (2010) Bardeskan 1:100000 quadrangle map, No 7560, Geological Survey and Mineral Exploration of Iran.
- Smith J. J., Platt B. F. (2023) Reconstructing late Miocene depositional environments in the central High Plains, USA: Lithofacies and architectural elements of the Ogallala Formation, Sedimentary Geology 443:106303. https://doi.org/10.1016/j.sedgeo.2022.106303
- Sridhar A., Chamyal L. S., Bhattacharjee F., Singhvi A. K. (2013) Early Holocene fluvial activity from the sedimentology and palaeohydrology of gravel terrace in the semi-arid Mahi River Basin, India, Journal of Asian Earth Sciences 66:240–248. https://doi.org/10.1016/j.jseaes.2013.01.017
- Verma S. P., Armstrong-Altrin J. S. (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins, Chemical Geology 355:117180. https://doi.org/10.1016/j.chemgeo.2013.07.014
- Verma S. P., Armstrong-Altrin J. S. (2016) Geochemical discrimination of siliciclastic sediments from active and passive margin settings, Sedimentary Geology 332:112. https://doi.org/10.1016/j.sedgeo.2015.11.011
- Zhang Y., Colombera L., Mountney N. P., Gao C., Ji Y., Wu H., Du W., Liu D., Bai D., Song W. (2021) Sedimentation of open-framework gravels in alluvial-fan settings: Quaternary Polar Fan, northwest China, Marine and Petroleum Geology 134:105376. https://doi.org/10.1016/j.marpetgeo.2021.105376
- Zhang Y., Dai X., Wang M., Li X. (2020) The concept, characteristics and significance of fluvial fans, Petroleum exploration and development 47(5):10141026. https://doi.org/10.1016/S1876-3804(20)60113-6