10.57647/j.ijes.2025.16973

Tectonomagmatic evolution implications of the Rashid Abad Eocene volcanic-pyroclastic rocks: evidence of an active continental margin in the subduction setting (THMP, Alborz-Azerbaijan Block (NW Iran))

  1. Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran

Received: 2024-12-29

Revised: 2025-02-16

Accepted: 2025-02-28

Published 2025-07-05

How to Cite

Seyyedi, M., Lotfi, M., Gourabjeripour, A., & Ashja Ardalan, A. (2025). Tectonomagmatic evolution implications of the Rashid Abad Eocene volcanic-pyroclastic rocks: evidence of an active continental margin in the subduction setting (THMP, Alborz-Azerbaijan Block (NW Iran)). Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.16973

PDF views: 57

Abstract

In the Western Alborz-Azerbaijan Block, Eocene volcanic activity generated a suite of volcanic-pyroclastic rocks and marine lavas of Middle Eocene age. The study area is located 45 km north of Zanjan, in the central part of the Tarom-Hashtjin subzone within the Western Alborz-Azerbaijan structural zone, northwestern Iran. This research aims to investigate the regional tectonomagmatic evolution of Eocene volcanic-pyroclastic rocks and their significance for mineralization in the study area. Petrographic and geochemical studies of these rocks in the Rashid Abad district illustrate a compositional range from acidic to intermediate-basic, ranging from rhyolite to basalt. Based on the geochemical data, the rocks exhibit a high-K calc-alkaline to shoshonitic series. According to the geochemical data, these rocks are mainly enriched in LREEs (e.g., Nd, Ce, La, and Sm) and LILEs (e.g., Rb, Cs, Pb, and K) but are depleted in HFSEs (e.g., Ti and Nb). Furthermore, the REE patterns indicate a negative Eu anomaly. These geochemical characteristics show the obvious features of the magmatic arc and magmatic activity related to subduction, which were derived from the involvement of released fluids from a subducted oceanic slab in the enrichment of magma elements. The ratios of Nb/U, Ce/Pb, Nb/U vs. Ce/Pb, and Na/Ta confirm the influence of crustal contamination in the area. The Nb/Y vs. Rb/Y ratios also demonstrated that the rocks were enriched in the subduction zone and experienced crustal contamination. The fractional crystallization (FC) trend was proved by the decrease in the concentrations of MgO, FeOt, Fe2O3, CaO, TiO2, Al2O3, Na2O, and P2O5 with increasing SiO2. The FC of pyroxene, plagioclase, and Fe-Ti oxides is the primary process in the magmatic evolution of the Rashid Abad volcanic and pyroclastic rocks. Moreover, the Ba/Rb vs. Rb ratio highlights the influence of crustal contamination associated with FC process within the upper crust. According to the tectonic discrimination diagrams, the rocks of the region exhibit characteristics of a magmatic arc setting related to an active continental margin arc in a subduction zone. Furthermore, the Nb/Y ratio, which varies below 1.72, confirms the presence of an active continental margin setting in the Rashid Abad district. The Eocene andesites and andesite basalts of the study area originated from the partial melting of a spinel lherzolite source, whereas dacitic and rhyolitic magmas formed by partial melting of the lower amphibolite crust. Based on these studies and results, it can be concluded that the primary magma of these rocks, of mantle origin, probably originated from partial melting of subducted oceanic crust and was metasomatized by fluids derived from a subducted slab. Finally, as the magma ascended through the crust or interacted with a shallow-level crustal magma chamber, it became contaminated with crustal material before undergoing fractional crystallization and eventually was suffered from FC.

Keywords

  • Magmatic evolution,
  • Active continental margin,
  • Subduction,
  • Tarom-Hashtjin,
  • Rashid Abad (Rashtabad)

References

  1. Abdolahadi A., Sheikhzakariaee S.J., Yazdi A., Mousavi S.Z. (2025) Plio-Quaternary Adakite Genesis and Post-collisional Processes: Whole Rock Constraints and Sr, Nd Isotopic Compositions in Alborz Magmatic Belt, Ardabil, Iran. Journal of Mining and Environment 16(2):737-765. DOI: https://doi.org/10.22044/jme.2024.14781.2801
  2. Afzali F. (2010) The study of economic geology, copper and gold mineralization in Rashtabad (Zanjan) region and its relationship with surrounding mineralizations. MSC Thesis, Payame Noor University of Tabriz, Tabriz, Iran.
  3. Afzali F., Hajalilo B., Moghadasi J. (2010) Metal mineralization related to hydrothermal alteration in Rasht Abad mine northwest of Zanjan. 1st Conference of Iranian Society of Economic Geology.
  4. Aghajani S., Emami M.H., Lotfi M., Gholizadeh K., Ghasemi Siani M. (2016) Source of polymetal epithermal veins at Nikuyeh district (West of Qazvin) based on mineralogy, alteration and fluid inclusion studies. Scientific Quarterly Journal of Geosciences 25: 157–168. https://doi.org/10.22071/gsj.2016.40893
  5. Aghajani S., Ghasemi Siani M., Emami M.H., Lotfi M., Gholizadeh K. (2020) Petrography, geochemistry, magmatic evolution and tectenomagmatic setting of igneous rocks associated with Nikuyeh epithermal mineralization (west of Qazvin). Kharazmi Journal of Earth Sciences 6: (1) 15–30. https://doi.org/10.52547/gnf.6.1.1
  6. Aghanabati A. (2004) Geology of Iran. Geological Survey of Iran .707p. (In Persian)
  7. Aghazadeh M., Badrzadeh Z., Castro A. (2015). Petrogenesis and U-Pb SHRIMP dating of Taroum plutons. Scientific Quarterly Journal of Geosciences 24; 3–20. https://doi.org/10.22071/gsj.2015.42373
  8. Ahmadian, J. (1991) Geological and geochemical investigation of hydrothermal alteration zones with a view on the mineralization in Zakir area/southwest of Tarem. MSC Thesis, Tabriz University, Tabriz, Iran.
  9. Ajalli N., Torkian A., Tale Fazel E. (2017) Investigatinof fluid inclusions in the deposit of copper-gold veins in Rasht Abad (north of Zanjan). 2st Conference of specialized and national on the use of fluids involved in geosciences.
  10. Ajalli N., Torkian A., Tale Fazel E. (2021) Geochemistry of basaltic rocks of Meshkin- Rasht Abad area (North of Zanjan). Journal of Petrology 45: 1-18. https://www.magiran.com/p2320776
  11. Ajalli N., Torkian A., Tale Fazel E. (2021) Intermediate sulfidation epithermal Cu±Au deposit of RashtAbad (North of Zanjan): evidence of mineralization, fluid inclusions and C-O stable isotopeIranian. Journal of Crystallography and Mineralogy 29(1): 207-220. https://www.magiran.com/p2281798
  12. Alavi M. (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Journal of Tectonophysics 229:211-238. https://doi.org/10.1016/0040-1951(94)90030-2
  13. Alavi M. (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics 21:1-33. https://doi.org/10.1016/0264-3707(95)00009-7
  14. Alberti A., Comin-Chiaramonti P., Sinigoi S., Nicoletti M., Petrucciani C. (1980) Neogene and Quaternary volcanism in Eastern Azerbaijan (Iran): some K-Ar age determinations and geodynamic implications. Journal of Geologische Rundschau 69:216-225. https://doi.org/10.1007/BF01869034.
  15. Alberto E., Patino Douce A.E. (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?. Journal of the Geological Society (London, Special Publications)) 168: 55-75. https://doi.org/10.1144/GSL.SP.1999.168.01.05
  16. Aldanmaz E., Pearce J.A, Thirlwall M., Mitchell J. (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of volcanology and geothermal research 102:67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
  17. Alizadeh E., Li H., Babazadeh S., Ma C., Förster M.W. (2023) Late Eocene slab retreat, extension, and mantle upwelling inferred from mantle signatures in potassium-rich magmatism in NE Iran. Journal of International Geology Review 65(9), 1586–1600. https://doi.org/10.1080/00206814.2023.2185823
  18. Allen M.B., Ghassemi M.R., Shahrabi M., Qorashi M. (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of structural geology 25:659-672. https://doi.org/10.1016/S0191-8141(02)00064-0
  19. and Re–Os geochronology. Journal of Ore Geology Reviews 102: 757–775. https://doi.org/10.1016/j.oregeorev.2018.10.007
  20. Ashrafi, N; Dabiri, R and Jahangiri, A. (2024) Some chemical variations in biotite, phlogopite, and muscovite, considering their tectonic setting. Geopersia 14(2): 307-32. DOI: https://doi.org/10.22059/geope.2024.373882.648749
  21. Asiabanha A., Foden J. (2012) Post-collisional transition from an extensional volcano-Sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Journal of Lithos, 148: 98-111. https://doi.org/10.1016/j.lithos.2012.05.014
  22. Askren D.R., Roden M.F., Whitney J.A. (1997) Petrogenesis of Tertiary andesite lava flows interlayered with large-volume felsic ash-flow tuffs of the western USA. Journal of Petrology 38:1021-1046. https://doi.org/10.1093/petroj/38.8.1021
  23. Aydınçakır E. (2014) The petrogenesis of Early Eocene non-adakitic volcanism in NE Turkey: Constraints on the geodynamic implications. Journal of Lithos 208:361-377. https://doi.org/10.1016/j.lithos.2014.08.019
  24. Azizi H., Asahara Y. (2013) Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: late Jurassic–early Cretaceous arc–continent collision. Journal of International Geology Review 55:1523-1540. https://doi.org/10.1080/00206814.2013.782959
  25. Azizi H., Moinevaziri H. (2009) Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics 47:167-179. https://doi.org/10.1016/j.jog.2008.12.002
  26. Azizi H., Moinevaziri H., Mohajjel M., Yagobpoor A. (2006) PTt path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous–Tertiary continental collision. Journal of Asian Earth Sciences 27:1-9. https://doi.org/10.1016/j.jseaes.2004.12.007
  27. Azizi H., Stern R.J, Topuz G., Asahara Y., Moghadam H.S. (2019) Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in normal continental crust. Journal of Lithos 346:105151. https://doi.org/10.1016/j.lithos.2019.105151
  28. Bacon C.R., Druitt T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of mount Mazama, Crater Lake, Oregon. Journal of Contribution to Mineralogy and Petrology 98: 224-256. https://doi.org/10.1007/BF00402114
  29. Ballato P., Uba C.E., Landgraf A., Strecker M.R., Sudo M., Stockli D.F., Friedrich A., Tabatabaei S.H. (2010) Arabia-Eurasia continental collision: Insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Journal of Geological Society of America Bulletin123:106-131. https://doi.org/10.1130/B30091.1
  30. Baranpurian N., Emami M.H., Vossoughi Abedini M., Dabiri R. (2014) Mineral Chemistry and Thermobarometry of the Upper Eocene Volcanic Rocks in NE Tafresh, Iran. Open Journal of Geology 4(12): 612-621. DOI: http://dx.doi.org/10.4236/ojg.2014.412045
  31. Barnes S.J., Achterbergh E., Makovicky E., Li C. (2001) Proton probe results for partitioning of platinum group elements between monosulphide solid solution and sulphide liquid. South African Journal of Geology 104:275-286. https://doi.org/10.2113/gssajg.104.4.275
  32. Barth M. G., McDonough W. F., Rudnick R. L. (2000) Tracking the budget of Nb and Ta in the continental crust. Journal of Chemical Geology 165, 197–213. https://doi.org/10.1016/S0009-2541(99)00173-4
  33. Berberian M. (1993) Tectonic Map of Iran Scale 1:1500000, In: Continental Deformation in the Iranian Plateau, Contribution to the Seismotectonics of Iran, Part IV. Geological Survey Iran (Tehran), 52 p.
  34. Berberian M., King G. (1981) Toward a palegeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences 18:210-265. https://doi.org/10.1139/e81-019
  35. Blourian G.H. (1994) Petrology of Tertiary volcanic rocks in the north of Tehran. MSC Thesis, Tarbiat Moallem University, Tehran, Iran, 145 pp.
  36. Booyabazoo (1999) Schematic diagram of the formation of a continental arc- showing convergence of an oceanic plate and a continental plate. Wikimedia. https://en.wikipedia.org/wiki/Continental_arc#/media/File:Active_Margin.svg
  37. Borghini A., Nicoli G., Ferrero S., O’brien P.J., Laurent O., Remusat L., Borghini G., Milani S. (2023) The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites. Journal of Science Advances 9:eabp9482. https://doi.org/10.1126/sciadv.abp9482
  38. Boynton W.V. (1984) Cosmochemistry of the rare earth elements: meteorite studies. Journal of Developments in geochemistry 2:63-114 https://doi.org/10.1016/B978-0-444-42148-7.50008-3
  39. Brunet M.F., Korotaev M.V., Ershov A.V., Nikishin A.M. (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Journal of Sedimentary geology 156:119-148. https://doi.org/10.1016/S0037-0738(02)00285-3
  40. Cambeses A., Garcia-Casco A., Molina J., Montero P., Basak S., Morales I., Bea F. (2021) The roles of partial melting of metasomatised mantle, magma mixing at continental crust level and fractionation in calc-alkaline minette genesis, SE Spain. Journal of International Geology Review:1-41. https://doi.org/10.1080/00206814.2021.1998798
  41. Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M. (2013) Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Journal of Lithos 180:109-127. https://doi.org/10.1016/j.lithos.2013.08.003
  42. Chapman T., Milan L. A., Zahirovic S., Merdith A. S., Clarke G. L., Sun M., Daczko N.R. (2024) Magmatic flare-ups in arcs controlled by fluctuations in subduction water flux. Journal of Tectonophysics 888: 230457. https://doi.org/10.1016/j.tecto.2024.230457
  43. Chazot G., Abbassene F., Maury R.C., Déverchère J., Bellon H., Ouabadi A., Bosch D. (2017) An overview on the origin of post-collisional Miocene magmatism in the Kabylies (northern Algeria): evidence for crustal stacking, delamination and slab detachment. Journal of African Earth Sciences 125:27-41. https://doi.org/10.1016/j.jafrearsci.2016.10.005
  44. Chen L. (2021) The role of lower crustal rheology in lithospheric delamination during orogeny. Journal of Frontiers in Earth Science 9:755519. https://doi.org/10.3389/feart.2021.755519
  45. Chen L., Zheng Y.F., Xu Z., Zhao Z.F. (2021) Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. Journal of Geoscience Frontiers 12:101-124. https://doi.org/10.1016/j.gsf.2020.12.005
  46. Chichaki Gh., Mokhtari M.A.A. (2002) Investigation of economic geology of Armaghanekhane - Rashid Abad region (northeast of Zanjan). 5th Conference of the Geological Society of Iran.
  47. Chin E.J., Lee C.TA., Tollstrup D.L., Xie L., Wimpenny J.B., Yin Q.Z. (2013) On the origin of hot metasedimentary quartzites in the lower crust of continental arcs. Journal of Earth and Planetary Science Letters 361:120-133. https://doi.org/10.1016/j.epsl.2012.11.031
  48. Clark G. C., Davis R. G., Hamzehpour B., Jones C. R. (1975) Explanatory text of the Bandar-e-Anzali quadrangle map, scale 1:250,000. Geological Survey of Iran, pp. 198.
  49. Çoban H., Karacık Z., Ece Ö.I. (2012) Source contamination and tectonomagmatic signals of overlapping Early to Middle Miocene orogenic magmas associated with shallow continental subduction and asthenospheric mantle flows in Western Anatolia: a record from Simav (Kütahya) region. Journal of Lithos 140:119-141. https://doi.org/10.1016/j.lithos.2011.12.006
  50. Dabiri, R., Akbari-Mogaddam, M., Ghaffari, M. (2018) Geochemical evolution and petrogenesis of the Eocene Kashmar granitoid rocks, NE Iran: Implications for fractional crystallization and crustal contamination processes. Iranian Journal of Earth Sciences 10(1):68-77.
  51. Dagva-Ochir L., Oyunchimeg T., Otgonbaatar D., Enkhdalai B., Battushig A. (2019) Middle Paleozoic oceanic basalts from the Tsoroidog Uul area hosted by the Tsetserleg accretionary terrane, Central Mongolia. Conference: IGCP -662 Project OROGENIC ARCHITECTURE AND CRUSTAL GROWTH FROM ACCRETION TO COLLISION Field Guide. https://doi.org/10.13140/RG.2.2.18916.32646
  52. Dagva-Ochira, L., Oyunchimeg, T.U., Enkhdalai, B., Safonova, I., Li, H., Otgonbaatar, D., Soh Tamehea, L., Sharav, D. (2020) Middle Paleozoic intermediate-mafic rocks of the Tsoroidog Uul’ accretionary complex, Central Mongolia: Petrogenesis and tectonic implications. Journal of Lithos 376–377, 105795. https://doi.org/10.1016/j.lithos.2020.105795
  53. Defant M.J., Drummond M.S. (1993) Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Journal of Geology 21: 547-550. https://doi.org/10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2
  54. Dungan M.A., Davidson J. (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes. Journal of Geology 32: 773–776. https://doi.org/10.1130/G20735.1
  55. Earth–Moon system from Nb/Ta systematics. Journal of Science 301: 84–87. https://doi.org/10.1126/science.1084662
  56. EDWARDS C.M., MENZIES M.A., THIRLWALL M.F., MORRIS J.D., LEEMAN W.P., HARMON R.S. (1994) The transition to potassic alkaline volcanism in Island Arcs: the Ringgit—Beser complex, East Java, Indonesia. Journal of Petrology 35:1557-1595. https://doi.org/10.1093/petrology/35.6.1557
  57. Eftekhar Nezhad J. (1980) Separation of different parts of Iran in terms of structural status in relation to sedimentary basins. Petroleum Society Journal 82: 19-28.
  58. Eriksson P.G., Altermann W., Nelson D.R., Mueller W.U., Catuneanu O. (2004) The Precambrian Earth. Developments in Precambrian Geology Series12: 941 pp.
  59. Ersoy E.Y., Palmer M.R., Genç Ş.C., Prelević D., Akal C., Uysal İ. (2017) Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of, crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of post-collisional magmatism. Journal of Lithos 288:55-71. https://doi.org/10.1016/j.lithos.2017.07.006
  60. Esmaeli M., Lotfi M., Nezafati N. (2015) Fluid inclusion and stable isotope study of the
  61. Esmaeli M., Lotfi M., Nezafati N. (2019) Mineralogy, and genesis of Khalyfehlou copper deposit based on host rock geochemical data and O-S isotope characteristic. Scientific Quarterly Journal of Geosciences 28: 33–46. https://doi.org/10.22071/gsj.2019.84248
  62. Eyuboglu Y., Dudas F.O., Santosh M., Eroğlu-Gümrük T., Akbulut K., Yi K., Chatterjee N. (2018) The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting. Journal of Asian Earth Sciences 157:141-165. https://doi.org/10.1016/j.jseaes.2017.07.004
  63. Fan W.M., Guo F., Wang Y.J., Lin G. (2003) Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of volcanology and geothermal research 121:115-135. https://doi.org/10.1016/S0377-0273(02)00415-8
  64. Faridi M., Anvari A. (1996) Geological Map of Hashtjin, scale 1:100,000 (N 5664). Iran Geological Survey, Tehran.
  65. Feyzi M., Ebrahimi M., Kouhestani H., Mokhtari M.A.A. (2016). Geology, mineralization and geochemistry of the Aqkand Cu occurrence (north of Zanjan, Tarom-Hashtjin zone). Journal of Economic geology 8:507–524. https://10.22067/ECONG.V8I2.49150
  66. Furman T. (2007) Geochemistry of East African Rift basalts: an overview. Journal of African Earth Sciences 48:147-160. https://doi.org/10.1016/j.jafrearsci.2006.06.009
  67. G. Soder C., Dunga J., L. Romer R. (2024) Continental subduction controls regional magma heterogeneity and distribution of porphyry deposits in post-collisional settings. Journal of Geochimica et Cosmochimica Acta 375: 217-228. https://doi.org/10.1016/j.gca.2024.04.015
  68. Geology 120, 347–359. https://doi.org/10.1016/0009-2541(94)00145-X
  69. Gerya T.V., Bercovici D., Becker T.W. (2021) Dynamic slab segmentation due to brittle–ductile damage in the outer rise. Journal of Nature 599:245-250. https://doi.org/10.1038/s41586-021-03937-x
  70. Ghadami Gh.R., Poosti M., Babai F. (2015) Petrogenesis of Mio-Pliocene Dacite-Andesite in SE of Urumieh-Dokhtar Magmatic Belt, (NE Shahr-e-Babak). Scientific Quarterly Journal of Geosciences 25(97):37-48. https://doi.org/10.22071/gsj.2015.41350
  71. Ghasemi Siani M., Lentz D.R., Nazarian M. (2020) Geochemistry of igneous rocks associated with mineral deposits in the Tarom-Hashtjin metallogenic province, NW Iran: An analysis of the controls on epithermal and related porphyry-style mineralization. Journal of Ore Geology Reviews 126:103753. https://doi.org/10.1016/j.oregeorev.2020.103753
  72. Ghasemi Siani M., Mehrabi B., Azizi H., Wilkinson C.M., Ganerød M. (2015) Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojehepithermal gold mineralization, NW Iran. Journal of Open Geosciences 7:207-222. https://doi.org/10.1515/geo-2015-0024
  73. Ghasemi Siani M., Mehrabi B., Nazarian M., Lotfi M., Corfu F. (2022) Geology and genesis of the Chomalu polymetallic deposit, NW Iran. Journal of Ore Geology Reviews 143: 104763. https://doi.org/10.1016/j.oregeorev.2022.104763
  74. Ghorbani M. (2007) Economic geology of mineral and natural resources of Iran. Arian Zamin, Tehran, 515pp.
  75. Gill J.B. (1981) Orogenic Andesites and plate Tectonics. Springer, New York. https://doi.org/10.1007/978-3-642-68012-0
  76. Goss A.R., Kay S.M. (2009) Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~ 28° S,~ 68° W). Journal of Earth and Planetary Science Letters 279:97-109. https://doi.org/10.1016/j.epsl.2008.12.035
  77. Green T.H. (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust mantle system. Jornal of Chemical
  78. Guffanti M., Clynne M.A., Muffler L-J.P. (1996) Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust, Journal of Geophysical Research 101: 148-227. https://doi.org/10.1029/95JB03463
  79. Hajalilo B, Khakzad A. (1999) Investigation of Bolaghi and Rashtabad copper mines mineralization based on fluid inclusions studies Journal of Earth Science, 7: no. 29-30.
  80. Hajalilo B. (1999) Tertiary metallogeny of western Alborz-Azerbaijan (Miyaneh-Siahrood), in particular Hashtjin district, 4th Conference of the Geological Society of Iran 323-331.
  81. Halder M., Paul D., Sensarma S. (2021) Rhyolites in continental mafic Large Igneous Provinces: Petrology, geochemistry and petrogenesis. Journal of Geoscience Frontiers 12:53-80. https://doi.org/10.1016/j.gsf.2020.06.011
  82. Harmon R.S., Barreiro B.A. (1984) Andean Magmatism: Chemical and Isotopic Constraints. Shiva Geology Series (Boston, Birkhäuser) 252 pp. https://doi.org/10.1007/978-1-4684-7335-3
  83. Harris N.B.W., Pearce J. A., Tindle A. G. (1986) Geochemical Characteristics of Collision-Zone Magmatism. In: Coward M. P., Reis A. C., eds., Collision Tectonics. Journal of the Geological Society (London, Special Publications) 19: 67–81
  84. https://doi.org/10.1144/GSL.SP.1986.019.01.04
  85. Hassanzadeh J, Ghazi A, Axen G, Guest B (2002) Olig-omiocene mafic-alkaline magmatism north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh–Dokhtar magmatic arc. Journal of Geological Society of America Abstracts with Programs 34: 331 pp.
  86. Hawkesworth C. J., Kemp A. I. S. (2006) Evolution of the continental crust. Journal of Nature https://doi.org/10.1038/nature05191.
  87. He C., Dong S., Wang Y. (2019) Lithospheric delamination and upwelling asthenosphere in the Longmenshan area: insight from teleseismic P-wave tomography. Journal of Scientific Reports 9:6967. https://doi.org/10.1038/s41598-019-43476-0
  88. He Q., Zhang S.B., Zheng Y.F., Chen R.X. (2022) Peritectic minerals record partial melting of the deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology 40:87-120. https://doi.org/10.1111/jmg.12620
  89. Hoffmann J. E., Munker C., Naeraa T., Rosing M. T., Herwartz D., Garbe-Schonberg D., Svahnberg H. (2011). Mechanisms of Archean crust formation inferred from highprecision HFSE systematics in TTGs. Journal of Geochimica et Cosmochimica Acta 75:4157–4178. https://doi.org/10.1016/j.gca.2011.04.027
  90. Hofmann A.W. (1986) Nb in Hawaiian magmas: constraints on source composition and evolution. Journal of Chemical Geology 57:17-30. https://doi.org/10.1016/0009-2541(86)90091-4
  91. Hofmann A.W., Jochum K.P., Seufert M., White W.M. (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Journal of Earth and Planetary science letters 79:33-45. https://doi.org/10.1016/0012-821X(86)90038-5
  92. Hollingsworth J., Fattahi M., Walker R., Talebian M., Bahroudi A., Bolourchi M.J., Jackson J., Copley A. (2010) Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophysical Journal International 181:1214-1246. https://doi.org/10.1111/j.1365-246X.2010.04591.x
  93. Hollocher K., Robinson P., Walsh E., Roberts D. (2012) Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science 312:357-416. https://doi.org/10.2475/04.2012.01
  94. Hosseinzadeh M.R., Moghfouri M., Moayyed M., Rahmani A. (2016) Khalifehlu deposit high-sulfidation epithermal Cu-Au mineralization in the Tarom magmatic zone, North Khoramdareh. Scientific Quarterly Journal of Geosciences 25: 179–194. https://doi.org/10.22071/gsj.2016.40910
  95. https:// doi.org /10.1127/njma/2017/0036
  96. https://doi.org/10.1016/j.oregeorev.2019.05.014
  97. Huang F, Xu J, Zeng Y, Chen J, Wang B, Yu H, Chen L, Huang W, Tan R (2017) Slab breakoff of the Neo‐Tethys Ocean in the Lhasa Terrane inferred from contemporaneous melting of the mantle and crust, Geochemistry, Geophysics, Geosystems 18:4074-4095. https://doi.org/https://doi.org/10.1002/2017GC007039
  98. in garnets of the Aghblag iron-copper skarn, West-Azarbaija province. Scientific Quarterly Journal of Geosciences 30(3): 265-274. https://doi.org/10.22071/gsj.2019.187341.1660
  99. in the Sangan mining region NE Iran. Journal of Ore Geology Reviews 84: 116–133. https://doi.org/10.1016/j.oregeorev.2017.01.003
  100. Irvine T.N., Baragar W. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences 8:523-548. https://doi.org/10.1139/e71-055
  101. Ji Z., Zhang Y.L., Wan C.B., Ge W.C., Yang H., Dong Y., Jing Y. (2021) Recycling of crustal materials and implications for lithospheric thinning: Evidence from Mesozoic volcanic rocks in the Hailar–Tamtsag Basin, NE China. Journal of Geoscience Frontiers 12:101-184. https://doi.org/10.1016/j.gsf.2021.101184
  102. Jiang Y.Y., Zhang Z.M., Palin R.M., Ding H.X., Mo X.X. (2022) Early Cenozoic partial melting of meta-sedimentary rocks of the eastern Gangdese arc, southern Tibet, and its contribution to syn-collisional magmatism. Journal of Geological Society of America Bulletin 134:179-200. https://doi.org/10.1130/B35763.1
  103. Jochum K.P., Stolz J., McOrist G. (2000) Niobium and tantalum in carbonaceous chondrites : constraints on the Solar System and primitive mantle niobium/tantalum, zirconium/niobium, and niobium/uranium ratios. Journal of Meteoritics and Planetary Science 35, 229-235. https://doi.org/10.1111/j.1945-5100.2000.tb01771.x
  104. Kamber B.S., Ewart A., Collerson K.D., Bruce M.C., McDonald G.D. (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Journal of Contributions to Mineralogy and Petrology 144:38-56. https://doi.org/10.1007/s00410-002-0374-5
  105. Kelemen P.B., Koga K., Shimizu N. (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Journal of Earth and Planetary Science Letters 146:475-488. https://doi.org/10.1016/S0012-821X(96)00235-X
  106. Kelemen P.B., Rilling J.L., Parmentier E., Mehl L., Hacker B.R. (2003) Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Journal of Geophysical Monograph Series (American Geophysical Union) 138:293-311. https://doi.org/10.1029/138gm13
  107. Kelemen P.B., Shimizu N., Dunn J.T. (1993) Relative depletion of niobium in some arc magmas and the continental crust: Partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Journal of Earth and Planetary Science Letters 120: 111-133. https://doi.org/10.1016/0012-821X(93)90234-Z
  108. Keller C.B., Schoene B., Barboni M., Samperton K.M., Husson J.M. (2015) Volcanic–plutonic parity and the differentiation of the continental crust. Journal of Nature 523:301-307. https://doi.org/10.1038/nature14584
  109. Khajehmohammadlou N., Calagari A.A., Siahcheshm K., Abedini A. (2020) Geochemistry of major and rare earth elements
  110. Khalyfehlou copper deposit, southeast Zanjan, Iran. Arabian Journal of Geosciences 8: 9625–9633. https://doi.org/10.1007/s12517-015-1907-3
  111. Kharazmi University 1 (2) :155-178. https://doi.org/10.29252/gnf.1.2.155
  112. Königer S., Lorenz V. (2002) Geochemistry, tectonomagmatic origin and chemical correlation of altered Carboniferous-Permian fallout ash tuffs in southwestern Germany. Journal of
  113. Geological Magazine 139:541–558. https://doi.org/10.1017/S0016756802006775
  114. Kouhestani H., Azimzadeh A.M., Mokhtari M.A.A., Ebrahimi M. (2017) Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. Journal of Mineralogy and Geochemistry 194: 139–155.
  115. Kouhestani H., Mokhtari M.A.A., Chang Z., Johnson C.A. (2018a) Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Journal of Ore Geology Reviews 93: 1–18. https:// doi.org /10.1016/j.oregeorev.2017.12.012
  116. Kouhestani H., Mokhtari M.A.A., Chang Z., Stein H.J., Johnson C.A. (2018b). Timing and genesis of ore formation in the Qarachilar Cu-Mo-Au deposit, Ahar-Arasbaran metallogenic zone, NW Iran: Evidence from geology, fluid inclusions, O-S isotopes
  117. Kouhestani H., Mokhtari M.A.A., Qin K., Zhao J. (2019) Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Journal of Ore Geology Reviews 109: 564–584.
  118. Kovalenko V., Naumov V., Girnis A., Dorofeeva V., Yarmolyuk V. (2010) Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks. Journal of Petrology 18:1-26. https://doi.org/10.1134/S0869591110010017
  119. Kretz R. (1983) Symbols of rock-forming minerals. Journal of American Mineralogist 68, 277–279.
  120. Kufner S.K., Kakar N., Bezada M., Bloch W., Metzger S., Yuan X., Mechie J., Ratschbacher L., Murodkulov S., Deng Z., Schurr B. (2021) The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. Journal of Nature communications 12:1685. https://doi.org/10.1038/s41467-021-21760-w
  121. Küster D., Harms U. (1998) Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Journal of Lithos 45:177-195. https://doi.org/10.1016/S0024-4937(98)00031-0
  122. Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of petrology 27:745-750. https://doi.org/10.1093/petrology/27.3.745
  123. Li H., Xi X.S., Sun H.S., Kong H., Wu Q.H., Wu C.M., Gabo-Ratio J.A.S. (2016) Geochemistry of the Batang Group in the Zhaokalong area, Yushu, Qinghai: Implications for the Late Triassic tectonism in the northern Sanjiang region, China. Journal of Acta Geologica Sinica (English Edition) 90: 704–721. https://doi.org/10.1111/1755-6724.12699
  124. Li L., Xiong X.L., Liu X.C. (2017) Nb/Ta Fractionation by Amphibole in Hydrous Basaltic Systems: Implications for Arc Magma Evolution and Continental Crust Formation. Journal of Petrology 58, 3–28. https://doi.org/10.1093/petrology/egw070
  125. Li X.H., Li Z.X., Li W.X., Liu Y., Yuan C., Wei G., Qi C. (2007) U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?. Journal of Lithos 96:186-204. https://doi.org/10.1016/j.lithos.2006.09.018
  126. Li Z., Pei X., Pei L., Liu C., Xu L., Li R., Lin H., Wang M., Ji S., Qin L., Yang Y., Wang M., Zhao S., Chen Y. (2023) Petrogenesis and Geochronology of A1-Type Rhyolites in the Late Late Triassic of the East Kunlun Orogenic Belt: Constraints on the End of the Paleo-Tethys Orogenic Event. Journal of Minerals 13(2): 290. https://doi.org/10.3390/min13020290
  127. Litvak V.D., Spagnuolo M.G., Folguera A., Poma S., Jones R.E., Ramos V.A. (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30′–37°S), Argentina. Journal of South American Earth Sciences 64:365-380. https://doi.org/10.1016/j.jsames.2015.09.010
  128. Liu H.Q., Xu Y.G., Tian W., Zhong Y.T., Mundil R., Li X.H., Yang Y.H., Luo Z.Y., Shang-Guan S.M. (2014) Origin of two types of rhyolites in the Tarim Large Igneous Province: Consequences of incubation and melting of a mantle plume. Journal of Lithos 204:59-72. https://doi.org/10.1016/j.lithos.2014.02.007
  129. Liu S., Hu R., Gao S., Feng C., Huang Z., Lai S., Yuan H., Liu X., Coulson I.M., Feng G., Wang T., Qi Y. (2009) U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong–Baoshan Block, Western Yunnan Province, SW China. Journal of Asian Earth Sciences 36:168-182. https://doi.org/10.1016/j.jseaes.2009.05.004
  130. Long X., Wilde S.A., Wang Q., Yuan C., Wang X.C., Li J., Jiang Z., Dan W. (2015) Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Journal of Earth and Planetary Science Letters 414:30-44. https://doi.org/10.1016/j.epsl.2015.01.007
  131. Lopes de Macêdo I.M., Geraldes M.C., de Abreu Marques R., Gonzaga de Melo M., Tavares A.D., Alves Martins M.V., Oliveira H.C., Rodrigues R.D. (2022) New clues for magma-mixing processes using petrological and geochronological evidence from the Castelo Intrusive Complex, Araçuaí Orogen (SE Brazil). Journal of South American Earth Sciences 115:103758. https://doi.org/10.1016/j.jsames.2022.103758
  132. Marchesi C., Garrido C.J., Godard M., Proenza J.A., Gervilla F., Blanco-Moreno J. (2006) Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Journal of Contributions to Mineralogy and Petrology 151:717-736. https://doi.org/10.1007/s00410-006-0089-0
  133. Mazhari N., Malekzadeh Shafaroudi A., Ghaderi M., Lackey J. S., Farmer G.L., Karimpour M.H. (2017) Geochronological and geochemical characteristics of fractionated I-type granites associated with the skarn mineralization
  134. Mehrabi B., Ghasemi Siani M., Goldfarb R., Azizi H., Ganerod M., Marsh E.E. (2016) Mineral assemblages, fluid evolution, and genesis of polymetallic epithermal veins, Glojeh district, NW Iran. Journal of Ore Geology Reviews 78:41-57. https://doi.org/10.1016/j.oregeorev.2016.03.016
  135. Menke W., Lamoureux J., Abbott D., Hopper E., Hutson D., Marrero A. (2018) Crustal heating and lithospheric alteration and erosion associated with asthenospheric upwelling beneath southern New England (USA). Journal of Geophysical Research: Solid Earth 123:8995-9008. https://doi.org/10.1029/2018JB15921
  136. MichaelZuo (2014) Cross-sectional diagram of magmatic processes in a continental arc. Wikimedia. https://commons.wikimedia.org/wiki/File:Continental_Arc_Sketch.jpg
  137. Middlemost E.A. (1994) Naming materials in the magma/igneous rock system. Journal of Earth-science reviews 37:215-224. https://doi.org/10.1016/0012-8252(94)90029-9
  138. Miyashiro A. (1978) Nature of alkalic volcanic rock series. Journal of Contributions to Mineralogy and Petrology 66:91-104. https://doi.org/10.1007/BF00376089
  139. Moayyed M. (1991) Petrographic and Petrochemical Study of Volcano-Plutonic Belt Rocks of Tarem Region in relation to Copper Genesis. MSC thesis, University of Tabriz, Tabriz, Iran.
  140. Moayyed M. (2001) Geochemistry and petrology of volcano-plutonic bodies in Tarum area. PhD thesis, University of Beheshti, Tehran, Iran.
  141. Mohammadi S.S, Nakhaei M. (2022) Geometric properties, petrography, geochemistry and tectonic setting of columnar andesites of Goorid quarry rubble mine, west of Sarbisheh city (South Khorasan). Petrological Journal 13(3): 33-62. https://doi.org/10.22108/ijp.2022.133573.1277
  142. Mokhtari M.A.A., Kouhestani H., Saeedi A. (2016) Investigation on type and origin of Copper mineralization at Aliabad Mousavi-Khanchy occurrence, East of Zanjan, using petrological, mineralogical and geochemical data. Scientific Quarterly Journal of Geosciences 25: 259–270. https://doi.org/10.22071/gsj.2016.40756
  143. Mollai H., Dabiri R., Torshizian H.A., Pe-Piper G., Wang W.E. (2021) Upper Neoproterozoic garnet-bearing granites in the Zeber-Kuh region from east central Iran micro plate: Implications for the magmatic evolution in the northern margin of Gondwanaland. Geologica Carpathica 72 (6): 461-81. DOI: http://dx.doi.org/10.31577/GeolCarp.72.6.2
  144. Müller D., Groves D.I. (1997) Potassic igneous rocks and associated gold-copper mineralization. Springer-Verlag (Berlin), 238pp. https://doi.org/10.1007/978-3-319-23051-1
  145. Müller D., Rock N., Groves D. (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Journal of Mineralogy and Petrology 46:259-289. https://doi.org/10.1007/BF01173568
  146. Munker C., Pfander J. A., Weyer S., Buchl A., Kleine T., Mezger K. (2003) Evolution of planetary cores and the
  147. Munker C., Worner G., Yogodzinski G., Churikova T. (2004) Behaviour of high field strength elements in subduction
  148. Nabatian G., Ghaderi M. (2013) Oxygen isotope and fluid inclusion study of the Sorkhe-Dizaj iron oxide-apatite deposit, NW Iran. Journal of International Geology Review 55:397-410. https://doi.org/10.1080/00206814.2012.713547
  149. Nabatian G., Ghaderi M., Daliran F., Rashidnejhad Omran, N. (2012) Sorkhe- Dizaj iron oxide- apatite ore deposit in the Cenozoic Alborz- Azarbaijan magmatic belt, NW Iran. Resource Geology 63: 42-56. https://doi:10.1111/j.1751-3928.2012.00209.x.
  150. Nabatian G., Ghaderi M., Neubauer F., Honarmand M., Liu X., Dong Y., Jiang S.Y., von Quadt A., Bernroider M. (2014) Petrogenesis of Tarom high-potassic granitoids in the Alborz–Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Journal of Lithos 184:324-345. https://doi.org/10.1016/j.lithos.2013.11.002
  151. Nabatian G., Jiang S.Y., Honarmand M., Neubauer F. (2016) Zircon U–Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Journal of Lithos, 244: 43-58. https://doi:10.1016/j.lithos.2015.11.020.
  152. Naderlou1 F., Mokhtari M. A A., Kouhestani H., Nabatian Gh. (2020) Type and origin of the north Chargar Cu-Au mineralization, southeast of Zanjan: using petrological, mineralogical and geochemical data. Scientific Quarterly Journal of Geosciences 31: 149-162. https://doi.org/10.22071/GSJ.2020.185408.1652
  153. Nakamura H., Iwamori H., Nakagawa M., Shibata T., Kimura J.I., Miyazaki T., Chang Q., Vaglarov B.S., Takahashi T., Hirahara Y. (2019) Geochemical mapping of slab-derived fluid and source mantle along Japan arcs. Journal of Gondwana Research 70:36-49. https://doi.org/10.1016/j.gr.2019.01.007
  154. Nazari M., Arian M.A., Solgi A., Zareisahamieh R., Yazdi A. (2023) Geochemistry and technomagmatic environment of Eocene volcanic rocks in the southeastern region of Abhar (NW Iran). Iranian Journal of Earth Sciences. https://doi.org/10.30495/ijes.2023.1956689.1746
  155. Nazari M., Arian M.A., Solgi A., Zareisahamieh R., Yazdi A. (2023) Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran. Iranian Journal of Earth Sciences 15(4): 228-247. DOI: https://doi.org/10.30495/ijes.2023.1956689.1746
  156. Nebel O., Vroon P.Z., van Westrenen W., Iizuka T., Davies G.R. (2011) The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Journal of Earth and Planetary Science Letters 303:240-250. https://doi.org/10.1016/j.epsl.2010.12.053
  157. Nielsen R.L., Forsythe L.M., Gallahan W.E., Fisk M.R. (1994) Major-and trace-element magnetite-melt equilibria. Journal of Chemical Geology 117:167-191. https://doi.org/10.1016/0009-2541(94)90127-9
  158. Novais-Rodrigues E., Jalowitzki T., Gervasoni F., Sumino H., Bussweiler Y., Klemme S., Berndt J., Conceição R.V., Schilling M.E., Bertotto G.W. (2021) Partial melting and subduction-related metasomatism recorded by geochemical and isotope (He-Ne-Ar-Sr-Nd) compositions of spinel lherzolite xenoliths from Coyhaique, Chilean Patagonia. Journal of Gondwana Research 98:257-276. https://doi.org/10.1016/j.gr.2021.06.003
  159. Otari, M and Dabiri, R. (2015) Geochemical and environmental assessment of heavy metals in soils and sediments of Forumad Chromite mine, NE of Iran. Journal of Mining and Environment 6(2): 251-261.
  160. Ousta S.h., Ashja-Ardalan A., Yazdi A., Dabiri R., Arian M.A. (2024) Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin. Geopersia 14 (1): 89-111. DOI: https://doi.org/10.22059/geope.2023.364334.648729
  161. Pan Z., Sun F., Cong Z. (2022) Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Journal of Minerals 12(9): 1085. https://doi.org/10.3390/min12091085
  162. Pang K.N., Chung S.L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H.Y., Chu C.H., Lee H.Y., Lo C.H. (2013) Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Journal of Lithos 180:234-251. https://doi.org/10.1016/j.lithos.2013.05.009
  163. Pang K.N., Chung S.L., Zarrinkoub M.H., Mohammadi S.S., Yang H.M., Chu C.H., Lee H.Y., Lo C.H. (2012) Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Journal of Chemical Geology 306:40-53. https://doi.org/10.1016/j.chemgeo.2012.02.020
  164. Patino Douce A.E. (1996) Effects of pressure and H2O content on the compositions of primary crustal melts. Transactions of the Royal Society of Edinburgh: Earth Sciences 87: 11-21. https://doi.org/10.1017/S026359330000643X
  165. Pawley A.R., Holloway J.R. (1993) Water sources for subduction zone volcanism: New experimental constraints. Journal of Science 260:664-667. https://doi.org/10.1126/science.260.5108.664
  166. Pearce J.A., Norry M.J. (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Journal of Contributions to mineralogy and petrology 69:33-47. https://doi.org/10.1007/bf00375192
  167. Pearce J.A., Parkinson I.J. (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. Journal of the Geological Society(London, Special Publications) 76:373-403. https://doi.org/10.1144/GSL.SP.1993.076.01.19
  168. Pearce JA (1983) Role of sub continental lithosphere in magma genesis at active continental margin In: C.J. Hawkesworth, and M. J. Norry, Eds, Continental basalts and mantle xenoliths (Shiva Publishing, Cheshire), pp.230- 249. https://orca.cardiff.ac.uk/id/eprint/8626
  169. Peccerillo A., Taylor S. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Journal of Contributions to mineralogy and petrology 58:63-81. https://doi.org/10.1007/BF00384745
  170. Pieterek B., Tribuzio R., Matusiak-Małek M., Ciążela J., Horn I., Weyer S., Strauss H., Kuhn T., Muszyński A. (2024) Underplated melts control sulfide segregation at the continental crust-mantle transition. Journal of Communications Earth & Environment 5: 45. https://doi.org/10.1038/s43247-024-01218-9
  171. Pitcher W.S., Atherton M.P., Cobbing E.J., Beckinsale R.D. (1985) Magmatism at a Plate Edge: The Peruvian Andes, Glasgow (Blackie) and New York (Halsted Press), 328 pp. https://doi.org/10.1007/978-1-4899-5820-4
  172. Poli G., Peccerillo A. (2016) The Upper Miocene magmatism of the Island of Elba (Central Italy): compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province. Journal of Mineralogy and Petrology 110:421-445. https://doi.org/10.1007/s00710-016-0426-6
  173. Qian X., Wang Y., Feng Q., Zi J.W., Zhang Y., Chonglakmani C. (2016) Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand. Journal of Lithos 248:418-431. https://doi.org/10.1016/j.lithos.2016.01.024
  174. Qian X., Wang Y., Srithai B., Feng Q., Zhang Y., Zi J.W., He H. (2017) Geochronological and geochemical constraints on the intermediate-acid volcanic rocks along the Chiang Khong–Lampang–Tak igneous zone in NW Thailand and their tectonic implications. Journal of Gondwana Research 45:87-99. https://doi.org/10.1016/j.gr.2016.12.011
  175. Rahmani F., Mackizadeh M.A., Noghreyan M., Marchesi C., Garrido C.J. (2020) Petrology and geochemistry of mafic and ultramafic cumulate rocks from the eastern part of the Sabzevar ophiolite (NE Iran): Implications for their petrogenesis and tectonic setting. Journal of Geoscience Frontiers 11:2347-2364. https://doi.org/10.1016/j.gsf.2020.02.004
  176. Roberts M.P., Clemens J.D. (1993) The origin of high potassium, calc-alkaline, I-type granitoids. Journal of Geology 21: 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
  177. Sadr Jahan Mines Development Company (2013) The report of the end of the exploration operationin Rashtabad area.
  178. Sadr Jahan Mines Development Company (2016-2017) Report of exploration activities and extraction plan in Rashtabad area.
  179. Salehpour S., Arian M.A., Rad A.J., Zarei Sahamieh R., Yazdi A. (2025) Geochemistry and technomagmatic environment of Eocene volcanic rocks in Yuzbashi Chay region, west of Qazvin (Iran). Iranian Journal of Earth Sciences 17(1): 1-13. DOI: https://doi.org/10.57647/j.ijes.2025.1701.04
  180. Santo A.P. (2021) A new magma type in the continental collision zone. The case of Capraia Island (Tuscany, Italy). Journal of Geosciences 11:104 pp. https://doi.org/10.3390/geosciences11020104
  181. Sarkhoshi A., Aghazadeh M., Javanshir A. (2015) Petrogenesis of NW of Bam Volcanic Rocks. Kharazmi Journal of Earth Sciences
  182. Sawyer E.W., Cesare B., Brown M. (2011) When the continental crust melts. Journal of Elements 7:229-234. https://doi.org/10.2113/gselements.7.4.229
  183. Schandl E.S., Gorton M.P. (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Journal of Economic geology 97:629-642. https://doi.org/10.2113/gsecongeo.97.3.629
  184. Schildgen T.F., Yıldırım C., Cosentino D., Strecker M.R. (2014) Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Journal of Earth-Science Reviews 128:147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
  185. Schroeder K.D. (2016) Diagram of the geological process of subduction. subduction-en.svg from Wikimedia Commons, CC-BY-SA 4.0 https://en.m.wikipedia.org/wiki/File:Subduction-en.svg##
  186. Şengör A. M. C, Cin A., Rowley D.B., Nie S.Y. (1993) Space-time patterns of magmatism along the Tethysides: a preliminary study. The Journal of Geology 101:51-84. https://doi.org/10.1086/648196
  187. Şengör A.M.C. (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Journal of Geological Society of America Special Paper 195:82 pp. https://doi.org/10.1130/SPE195-p1
  188. Sepidbar F., Mirnejad H., Changqian M., Shafaii Moghadam H. (2018) Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: Timing and sources. Journal of Gondwana Research 57:141–156. https://doi.org/10.1016/j.gr.2018.01.008
  189. Seyyedi M., Lotfi M., Gourabjeripour A., Ashja Ardalan A. (2022) Investigation of alterations and lineaments in Rashid Abad mineral area (N Zanjan, NW Iran), Using integration of Remote Sensing and Aeromagnetic data. Iranian Journal of Earth Sciences 14:301-321. https://doi.org/10.30495/ijes. 2022.1942724.1660
  190. Shafaii Moghadam H., Li X.H., Ling X.X., Santos J.F., Stern R.J., Li Q.L., Ghorbani G. (2015b) Eocene Kashmar granitoids
  191. Shafaii Moghadam H., Rossetti F., Lucci F., Chiaradia M., Gerdes A., Martinez M.L., Ghorbani G., Nasrabady M. (2016) The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran. Journal of Lithos 248-251: 248–535. https://doi.org/10.1016/j.lithos.2016.01.019
  192. Shahbazi S., Ghaderi M., Afzal P. (2019) Prognosis of of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iranian Journal of Earth Sciences 13(1): 31-40. https://doi.org/10.30495/IJES.2021.678957
  193. Shamloo H.I., Grunder A.L. (2023) Magma mingling and ascent in the minutes to hours before an explosive eruption as recorded by banded pumice. Journal of Geology 51:957-961. https://doi.org/10.1130/G51318.1
  194. Shokri P., Dehbozorgi M., Hakimi Asiabar S. (2020) Recent tectonic activity in Central Alborz Mountain, Iran: morphometric analysis and knickpoint identification. Journal of Mountain Science 17:3137-3161. https://doi.org/10.1007/s11629-019-5945-2
  195. Smith I.E.M., Stewart R.B., Price R.C. (2003) The petrology of a large intra-oceanic silicic eruption: The Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. Journal of Volcanology and Geothermal Research 124: 173–194. https://doi.org/10.1016/S0377-0273(03)00040-4
  196. Stöcklin J. (1968) Structural history and tectonics of Iran: a review. Journal of American Association of Petroleum Geologists (AAPG) bulletin 52:1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
  197. Stöcklin J., Eftekhar Nezhad J. (1969) Geological map of Zanjan, scale 1:250 000, 1 sheet, No. D4-61: Geological Survey of Iran, Tehran. https://library.iut.ac.ir/dL/search/default.aspx?Term=9891&Field=0&DTC=100
  198. Stöcklin J., Nabavi M.H. (1973) Tectonic map of Iran, scale 1:2 500 000, 1 sheet, Geological Survey of Iran, Tehran https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~354487~90121471
  199. Su H.M., Jiang S.Y., Zhang D.Y., Wu X.K. (2017) Partial melting of subducted sediments produced early Mesozoic calc-alkaline lamprophyres from northern Guangxi Province, South China. Journal of Scientific Reports 7:4864. https://doi.org/10.1038/s41598-017-05228-w
  200. Sun S.S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Journal of the Geological Society (London, Special Publications) 42:313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  201. Tarabi S., Emami M.H., Modabberi S., Sheikh-Zakariaee S.J. (2019) Eocene-Oligocene volcanic units of momen abad, east of Iran: petrogenesis and magmatic evolution. Iranian Journal of Earth Sciences 11:126-140. https://doi.org/10.30495/IJES.2019.665319
  202. Tatsumi Y. (2000) Slab melting: its role in continental crust formation and mantle evolution. Journal of Geophysical Research Letters 27:3941-3944. https://doi.org/10.1029/2000GL012061
  203. Tatsumi Y., Takahashi T. (2006) Operation of subduction factory and production of andesite, Journal of Mineralogical and Petrological Sciences 101:145-153. https://doi.org/10.2465/jmps.101.145
  204. Taylor S.R. Mclennan S.M. (1985) The continental crust: Its composition and evolution. The Journal of Geology 94: 57–72.
  205. Temel A., Gündoğdu M.N., Gourgaud A. (1998) Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey. Journal of volcanology and geothermal research 85:327-354. https://doi.org/10.1016/S0377-0273(98)00062-6
  206. Till C. B., Kent A. J. R., Abers G. A., Janiszewski H. A., Gaherty J. B., Pitcher B. W. (2021) The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc. Journal of Nature Communications https://doi.org/10.1038/s41467-019-09113-0.
  207. Towsehe Olume Zamin Company (TOZ Co.) (2003) Systematic geochemical explorations in leaf of Hashtjin (1:100,000). Report of Ardabil province SAMT organization.
  208. Ulmer P. (2001) Partial melting in the mantle wedge-the role of H2O in the genesis of mantle-derived ‘arc-related’magmas. Journal of Physics of the Earth and Planetary Interiors 127:215-232. https://doi.org/10.1016/S0031-9201(01)00229-1
  209. Wang X.C., Li Q., Wilde S.A., Li Z.X., Li C., Lei K., Li S.J., Li L., Pandit M.K. (2021) Decoupling between oxygen and radiogenic isotopes: evidence for generation of juvenile continental crust by partial melting of subducted oceanic crust. Journal of Earth Science 32:1212-1225. https://doi.org/10.1007/s12583-020-1095-2
  210. Weaver B.L., Tarney J. (1984) Empirical approach to estimating the composition of the continental crust. Journal of Nature 310: 575-577. https://doi.org/10.1038/310575a0
  211. Wilson M. (1989) Igneous petrogenesis A global tectonic approach: Unwin Hyman, London, 466 pp. https://doi.org/10.1007/978-1-4020-6788-4
  212. Winter J.D. (2001) An introduction to igneous and metamorphic petrology. United States of America.
  213. Winter J.D. (2010) Principles of igneous and metamorphic petrology, Second Ed, Prentice Hall, New York, 720 pp.
  214. Woudloper (2009) Tectonic map of southern Europe, North Africa and the Middle East, wikimedia, Own work, 1 sheet. https://en.m.wikipedia.org/wiki/File:Tectonic_map_Mediterranean_EN.svg
  215. Wu J.T-J., Wu J., Alexandrov I., Lapen T., Lee H.Y, Ivin V. (2022) Continental growth during migrating arc magmatism and terrane accretion at Sikhote-Alin (Russian Far East) and adjacent northeast Asia. Journal of Lithos 432:106891. https://doi.org/10.1016/j.lithos.2022.106891
  216. Yang W.B, Niu H.C., Shan Q., Chen H.Y., Hollings P., Li N.B., Yan S., Zartman R.E. (2014) Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone. Journal of Geochimica et Cosmochimica Acta 143:143-164. https://doi.org/https://doi.org/10.1016/j.gca.2014.04.033
  217. Yang W.B., Niu H.C., Cheng L.R., Shan Q., Li N.B. (2015) Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing’an Mountains, NE China. Journal of Asian Earth Sciences 113:454-470. https://doi.org/10.1016/j.jseaes.2014.12.002
  218. Yazdani S., Castillo P.R., Hassanzadeh J. (2018) Crust-mantle interaction inferred from the petrology and Sr-Nd-Pb isotope geochemistry of Eocene arc lavas from the Kahrizak Mountains, north-central Iran Journal of Lithos 318:299-313. https://doi.org/10.1016/j.lithos.2018.08.018
  219. Yazdi A., Ashja-Ardalan A., Emami M.H., Dabiri R., Foudazi M. (2019) Magmatic interactions as recorded in plagioclase phenocrysts of quaternary volcanics in SE Bam (SE Iran). Iranian Journal of Earth Sciences 11(3): 215-224. DOI: https://doi.org/10.30495/ijes.2019.667379
  220. Yazdi A., ShahHoseini E., Razavi R. (2016) AMS, A method for determining magma flow in Dykes (Case study: Andesite Dyke). Research Journal of Applied Sciences 11(3): 62-67. DOI: http://doi.org/10.3923/rjasci.2016.62.67
  221. Yazdi A., Shahhosseini E., Moharami F. (2022) Petrology and tectono-magmatic environment of the volcanic rocks of West Torud–Iran, Iranian Journal of Earth Sciences 14(1): 40-57. https://dx.doi.org/10.30495/ijes.2022.1929200.1601
  222. Zamanian H., Rahmani S.h., Zareisahamieh R., Pazoki A., Yang X.Y. (2020) Geochemical characteristics of igneous host rocks of Lubin-Zardeh Au-Cu deposit, NW Iran. Ore Geology Reviews 122: 103496. https://doi.org/10.1016/j.oregeorev.2020.
  223. Zanchi , Berra , Mattei , Ghassemi M.R., Sabouri J. (2006) Inversion tectonics in central Alborz, Iran. Journal of Structural Geology 28:2023-2037. https://doi.org/10.1016/j.jsg.2006.06.020
  224. Zhang , Liang , Wang , Jin Z., Zhu L., Gan W. (2020) Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones. Journal of American Mineralogist 105:1191-1203. https://doi.org/10.2138/am-2020-7403
  225. Zheng W. F. (2019) Subduction zone chemistry. Journal of Geoscience Frontiers 10: 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003
  226. Zheng Y., Chen R., Xu Z., Zhang S. (2016) The transport of water in subduction zones. Journal of Science China Earth Sciences 59:651-682. https://doi.org/10.1007/s11430-015-5258-4
  227. Zhong H., Zhu W.G., Hu R.Z., Xie L.W., He D.F., Liu F., Chu Z.Y. (2009) Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Journal of Lithos 110:109-128. https://doi.org/10.1016/j.lithos.2008.12.006
  228. zones: Constraints from Kamchatka–Aleutian arc lavas. Journal of Earth and Planetary Science Letters 224: 275–293. https://doi.org/10.1016/j.epsl.2004.05.030