Numerical Modelling for Microfracture Treatment in Unconventional Reservoir based on Fluid Injection
- Department of Petroleum Engineering and Earth Sciences (Energy Cluster), School of Engineering, UPES, Energy acres, Bidholi via Prem Nagar, Dehradun, Uttarakhand, India
Received: 2024-01-17
Revised: 2024-10-17
Accepted: 2024-11-21
Published 2025-06-24
Copyright (c) -1 Harinandan Kumar, Mandira Agarwal, Siddiqui Mohammad Saadat (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 13
Abstract
Unconventional energy sources are the future hope for the fulfillment of increasing energy demand. Global energy demand has continued to grow, averaging around 1% annually between 2019 and 2023. The authors of the present paper aim to establish unconventional reservoirs as a bridge solution to fill the gap. The study focuses on the integrity of the fracture network for the successful transportation of CO2 in unconventional reservoirs. A well-developed microfracture network leads to smooth, fluid transportation in the formation. Microfracture analysis is a common challenge in the petroleum industry due to the variation in reservoir conditions. Therefore, it is crucial to investigate the microfracture network for smooth fluid flow in the reservoir. The present paper deals with improving the fracture propagation of reservoir rock with the help of a phase field model (PFM). The fracture propagation was examined using COMSOL Multiphysics software based on the classical Biot poroelasticity theory. Results thus obtained indicated that the fracture generation on either side of the initial fractures was due to the induced tensile stress. A critical pressure was estimated for the fracture initiation and its propagation. Higher fluid injection pressure was observed for the fracture's coalescence and the development of the fracture network in the unconventional reservoir.
Keywords
- Unconventional Reservoir,
- Microfracture,
- Fluid flow,
- Phase field model (PFM),
- COMSOL Multiphysics
References
- Adachi J., Siebrits L. E., Peirce A., Desroches J. (2007) Computer simulation of hydraulic fractures. International. Journal of Rock Mechanics and Mining Sciences 44:739-757. https://doi.org/10.1016/j.ijrmms.2006.11.006
- Andrews I. J. (2013) The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change 64: 12p.
- Areias P., Rabczuk T., Cesar D. S. J. (2016) A novel two-stage discrete crack method based on the screened poisson equation and local mesh refinement. Computational Mechanics 58: 1003-1018. https://doi.org/10.1007/s00466-016-1328-5
- Borden M. J., Verhoosel C. V., Scott M. A., Hughes T. J. R., Landis C. M. (2012) A phase-field description of dynamic brittle fracture. Computational Methods of Applied Mechanical Engineering 217:77–95. https://doi.org/10.1016/j.cma.2012.01.008
- Busetti S., Jiao W., Reches Z. E. (2014) Geomechanics of hydraulic fracturing microseismicity: Part 1. Shear, hybrid, and tensile events. AAPG Bulletin 98:2439-2457. https://doi.org/10.1306/05141413123
- Charpentier R. R., Cook T. A. (2011) USGS Methodology for Assessing Continuous Petroleum Resources. U. S. Geological Survey Open-File Report 4:1167 p.
- Chen B., Barboza B. R., Sun Y., Bai J., Thomas H. R., Dutko M., Cottrel M., Li C. (2022) A Review of Hydraulic Fracturing Simulation. Archives of Computational Methods in Engineering 29:1-58. https://doi.org/10.1007/s11831-021-09653-z
- Chen F. Y., Zhou S. W., Zhuang X. Y. (2020) Phase field modeling of hydraulic fracture propagation in spatially variable rock masses. Earth and Environmental Science 570: 022034 p. https://doi.org/10.1088/1755-1315/570/2/022034
- Daneshy A. A. (1973) Experimental investigation of hydraulic fracturing through perforations. Journal of Petroleum Technology 25:1201-1206. https://doi.org/10.2118/4333-PA
- Du J., Liu J., Zhao L., Liu P., Chen X., Wang Q., Yu M. (2022) Water-soluble polymers for high-temperature resistant hydraulic fracturing: A review. Journal of Natural Gas Science and Engineering 104:104673 p. https://doi.org/10.1016/j.jngse.2022.104673
- Fisher K., Warpinski N. (2012) Hydraulic fracture-height growth: real data. SPE Production and Operation 27:8-19. https://doi.org/10.2118/145949-PA
- Francfort G. A., Marigo J. J. (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46:1319-1342. https://doi.org/10.1016/S0022-5096(98)00034-9
- Grechka V., Mazumdar P., Shapiro S. A. (2010) Predicting permeability and gas production of hydraulically fractured tight sands from microseismic data. Geophysics 75:1-10. https://doi.org/10.1190/1.3278724
- Hawkes C. (2015) Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK. Tight Oil Optimization Conference, Calgary AB 1:1-41.
- He Q., Suorineni F. T., Oh J. (2016) Review of hydraulic fracturing for preconditioning in cave mining. Journal of Rock Mechanics and Rock Engineering 49:4893–4910. https://doi.org/10.1007/s00603-016-1075-0
- Hubbert M. K., Willis D. G. (1957) Mechanics of hydraulic fracturing. Journal of Petroleum Technology 9: 53-168. https://doi.org/10.2118/686-G
- Hyman J. D., Jimenez M. J., Viswanathan H. S., Carey J. W., Porter M. L., Rougier E., Karra S., Kang Q., Frash L., Chen L., Lei Z., OMalley D., Makedonska N. (2016) Understanding hydraulic fracturing: a multi-scale problem. Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering 374:1-16. https://doi.org/10.1098/rsta.2015.0426
- Jia Y., Lu Y., Elsworth D., Fang,Y., Tang J. (2018) Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. Journal of Petroleum Science and Engineering 165:284-297. https://doi.org/10.1016/j.petrol.2018.02.018
- Johri M., Zoback M. D. (2013) The Evolution of Stimulated Reservoir Volume during Hydraulic Stimulation of Shale Gas Formations. In: Unconventional Resources Technology Conference, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers 5:1661-1671. https://doi.org/10.1190/urtec2013-170
- Karimiazar J., Sharifi Teshnizi E., O'Kelly B.C., Sadeghi S., Karimizad N., Yazdi A., Arjmandzadeh R. (2023) Effect of nano-silica on engineering properties of lime-treated marl soil, Transportation Geotechnics 43, 101123. DOI: https://doi.org/10.1016/j.trgeo.2023.101123
- Lee S., Wheeler M. F., Wick T. (2016) Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Computer Methods in Applied Mechanics and Engineering 305:111-132. https://doi.org/10.1016/j.cma.2016.02.037
- Liu P., Lou1 F., Du J., Chen X., Liu J., Wang M. (2023) Impact of key parameters on far-field temporary plugging and diverting fracturing in fractured reservoirs: A 2D finite element study. Advances in Geo-Energy Research 10:104-116. https://doi.org/10.46690/ager.2023.11.05
- Miehe C., Hofacker M., Welschinger F. (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765-2778. https://doi.org/10.1016/j.cma.2010.04.011
- Mikelic A., Wheeler M. F., Wick T. (2013) A phase field approaches the fluid filled fracture surrounded by a poroelastic medium. ICES Report 2:1315 p. https://api.semanticscholar.org/CorpusID:200622
- Mikelic A., Wheeler M. F., Wick T. (2015) Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Computational Geoscience 19:1171–1195. https://doi.org/10.1007/s10596-015-9532-5
- Polancec T., Lesicar T., Tonkovic Z., Glodez S. (2023) Modelling of rolling-contact fatigue pitting phenomena by phase field method. Wear 532-533:205068 p. https://doi.org/10.1016/j.wear.2023.205068
- Reinicke A., Rybacki E., Stanchits S., Huenges E., Dresen G. (2010) Hydraulic fracturing stimulation techniques and formation damage mechanisms - implications from laboratory testing of tight sandstone - proppant systems. Geochemistry 70:107-117. https://doi.org/10.1016/j.chemer.2010.05.016
- Robert C., Wiseall A., Hennissen J., Waters C. N., Kemp S. J., Simonin A. O., Holyoake S. J., Haslam R. B. (2015) Hydraulic fracturing: A review of theory and field experience. British Geological Survey Open Report 15:066 p.
- Roussel N. P., Manchanda R., Sharma M. M. (2012) Implications of fracturing pressure data recorded during a horizontal completion on stage spacing design. SPE Hydraulic Fracturing Technology Conference 3:152631 p. https://doi.org/10.2118/152631-MS
- Saadat, S., Ghoorchi, M., Dabiri, R. (2023) Extracting clay minerals with emphasis on Bentonite in Eastern Iran, using Landsat 8 and ASTER images. Iranian Journal of Earth Sciences 15(3):188-194. DOI: https://doi.org/10.30495/ijes.2023.1973739.1815
- Sayers C. M., Guo S., Silva J. (2015) Sensitivity of the elastic anisotropy and seismic reflection amplitude of the Eagle Ford Shale to the presence of kerogen. Geophysical Prospecting 63:151–165. https://doi.org/10.1111/1365-2478.12153
- Selley R. C. (2012) UK shale gas: The story so far. Marine and Petroleum Geology 31: 100-109.
- Sone H., Zoback M. (2013) Mechanical properties of shale gas reservoir rocks – Part 1: Static and dynamic elastic properties and anisotropy. Geophysics 78:381-392. https://doi.org/10.1190/geo2013-0050.1
- Wang B. B., Zhou F. J., Li Y. P., Yu B., Martyushev D., Liu X. F., Wang M., He C. M., Han D. X., Sun D. L. (2022a) Numerical simulation of fracture propagation in Russia carbonate reservoirs during refracturing. Petroleum Science 19:2781-2795. https://doi.org/10.1016/j.petsci.2022.05.013
- Wang L., Li Y., Xu D., Gao Y., Zhang J., He J., Zhang F., Gao S., Guo X. (2022b) Evolution of Near-Well Damage Caused by Fluid Injection through Perforations in Wellbores in Low-Permeability Reservoirs: A Case Study in a Shale Oil Reservoir. Lithosphere 2022:1-14. https://doi.org/10.2113/2022/3824011
- Wu J. Y., Nguyen V. P., Nguyen C. T., Sutula D., Sinaie S., Bordas S. P. A. (2022) Phase-field modeling of fracture. Advances in Applied Mechanics 20:1-183. https://doi.org/10.1016/bs.aams.2019.08.001
- Zeng Q., Wang T., Liu Z., Zhuang Z. (2017) Simulation-based unitary fracking condition and multiscale self-consistent fracture network formation in shale. Journal of Applied Mechanics 84: 05-12. https://doi.org/10.1115/1.4036192
- Zhou L., Hou M. Z., Gou Y., Li M. (2014) Numerical investigation of a low-efficient hydraulic fracturing operation in a tight gas reservoir in the North German Basin. Journal of Petroleum Science and Engineering 120:119-129. https://doi.org/10.1016/j.petrol.2014.06.001