10.57647/j.ijes.2025.16894

Petrogenesis and tectonic implications of Neoproterozoic to Cenozoic A-type granitoids in NW Iran: geochemical and tectonic constraints

  1. Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran
  2. Department of Geology, Ma.C., Islamic Azad University, Mashhad, Iran
  3. Department of Geology, Kah.C., Islamic Azad University, Kahnooj, Iran

Received: 2024-03-09

Revised: 2024-05-13

Accepted: 2024-07-28

Published 2025-06-07

How to Cite

Talebian Borojenie, H., Sheykhzakariaei, S. J., Dabiri, R., & Yazdi, A. (2025). Petrogenesis and tectonic implications of Neoproterozoic to Cenozoic A-type granitoids in NW Iran: geochemical and tectonic constraints. Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.16894

PDF views: 55

Abstract

In the northwest of Iran, in the Sanandaj-Sirjan zone, type A granitoid masses related to the Late Neoproterozoic-Lower Cambrian (Ajab Shir rhyolites, Chaipareh, Mahneshan, Misho, Saqez and Sufi Abad), Mesozoic (south of Dehgolan, Ebrahim-Attar), Cenozoic (Harris and Takab) exist. In terms of geochemical characteristics, the granitoid rocks of Late Neoproterozoic-Lower Cambrian time show the characteristics of magmas related to volcanic arcs, which were formed due to a tectonic window (SCLM) in the final/post-pan-African orogeny stages. In other words, the magmatism of the active continental margin of Cadomin in Iran occurred after the main phase of Pan-African orogeny and simultaneously with the stretching of the continental crust in the Arabian-Nubian shield. But the granitoid rocks of the Mesozoic era (Late Triassic- Early Jurassic) were formed by Paleo Tethys subsidence. Cenozoic (Eocene) granitoid rocks were formed in a tensile environment after the collision of the Arabian and Eurasian plates. Most A-type granites are peraluminous, rich in iron and show enrichment of LREE elements compared to HREE. Also, the amount of MgO, CaO, Sr, Ba, Nb-Ta and Eu is low in them. Most of the granites of Sanandaj-Sirjan zone are located in the A1 range, but some are also located in the A2 range, which is due to metasomatism by fluids originating from the oceanic crust or slab-derived melts. All these granites were formed in a tensile environment.

Keywords

  • Granite type- A,
  • Sanandaj-Sirjan Zone,
  • SCLM,
  • Neoproterozoic

References

  1. ADVAY, M., JAHANGIRI, A., MOJTAHEDI, M. & GHALAMGHASH, J. (2009): Petrology and geochemistry of Shah Ashan Dagh mafic rocks and A-type granite in NE of Khoy, NW Iran. Scientific Quarterly Journal, Geosciences, Islamic Republic of Iran. 20: 83–90 (in Persian).
  2. AGARD, P., JOLIVET, L., VRIELYNCK, B., BUROV, E., & MONIE, P. (2007): Plate acceleration: the obduction trigger? (Earth Planet) Sciences. Lett. 258, 428–441.
  3. AJAJI, T., WEIS, D., GIRET, A., & BOUABDELLAH, M. (1998): Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. (Lithos) 45, 371–393.
  4. ALAVI, M. (1994): Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. (Tectonophysics) 229: 211–238.
  5. ALAVINAINI. M., (1981): Mahrud geological map, Geological map of Iran, 1:100000 eries, Sheet 8154, (Geological and mineral survey of Iran).
  6. ARIAN, M., MALEKI, Z., NOROOZPOUR, H., (2011): Cenozoic Diastrophism and Deformational Events in the East Central Alborz. (Journal of Basic and Applied Scientific Research) 1 (11), 2394-2400
  7. Arjmandzadeh, R., Sharifi Teshnizi, E., Ahmadi, A.A., mahdavi, A., Tavsoli, S., Dabiri, R. (2021) The mineralogy, geochemistry and genesis of Aghol-Messi sedimentary copper - uranium deposit, Tabas block, Central Iran. Researches in Earth Sciences 11(4): 47-70. DOI: https://doi.org/10.52547/esrj.11.4.47
  8. ARVIN, M., PAN, Y., DARGAHI, S., MALEKIZADEH, A., BABAEI, A., (2007): Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. J. (Asian Earth Sciences) 30, 474–489. https://doi.org/10.1016/j. jseaes.2007.01.001.
  9. Ashrafi, N; Dabiri, R and Jahangiri, A. (2024) Some chemical variations in biotite, phlogopite, and muscovite, considering their tectonic setting. Geopersia 14(2): 307-32. DOI: https://doi.org/10.22059/geope.2024.373882.648749
  10. AZIZI, H., ASAHARA, Y., MEHRABI, B., CHUNG, S.L., (2011a): Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffiabad area, Sanandaj-Sirjan zone, NW Iran. (Chemie der Erde-Geochemistry) 71, 363–376. https://doi.org/10.1016/j.chemer.2011.06.005.
  11. AZIZI, H., JAHANGIRI, A. (2008): Cretaceous subduction-related volcanism in the northern Sanandaj–Sirjan Zone, Iran. (Journal of Geodynamics) 45, 178–190.
  12. AZIZI, H., LUCCI, F., STERN, R.J., HASANNEJAD, S., & ASAHARA, Y., (2018): The late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, Northwest Iran: Mantle plume or active margin? (Lithos) 308, 364–380
  13. AZIZI, H., STERN, R.J., TOPUZ, G., ASAHARA, Y., MOGHADAM, H.S., (2019): Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in normal continental crust. (Lithos) 346, 105151.
  14. BADR, A., DAVOUDIAN, A.R., SHABANIAN, N., AZIZI, H., ASAHARA, Y., NEUBAUER, F., DONG, Y., & YAMAMOTO, K., (2018): A-and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: evidence for Early Paleozoic post-collisional magmatism. (Lithos) 300, 6–104. https://doi.org/10.1016/j.
  15. BARBER, D.E., STOCKLI, D.F., HORTON, B.K., KOSHNAW, R.I., (2018b): Cenozoic exhumation and foreland basin evolution of the Zagros orogen during the Arabia-Eurasia collision, western Iran. (Tectonics) 37, 4396–4420.
  16. BAYATI, M., ESMAEILY, D., MAGHDOUR-MASHHOUR, R., LI, X.H., & STERN, R.J., (2017): Geochemistry and petrogenesis of Kolah-Ghazi granitoids of Iran: Insights into the Jurassic Sanandaj-Sirjan magmatic arc. (Chemie der Erde-Geochemistry) 77 (2), 281–302. https://doi.org/10.1016/j.chemer.2017.02.003.
  17. BEA, F., ARZAMASTSEV, A., MONTERO, P., & ARZAMASTSEVA, L., (2001): Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials. Contrib. Miner. Petrol. 140 (5), 554–566. https://doi.org/10.1007/ s004100000211.
  18. BERBERIAN, M., & KING, G.C.P. (1981): Towards a Paleogeography and Tectonic Evolution of Iran. Can. (Journals of Earth Sciences) 18, 210–265.
  19. BEST, M. G. (2003): Igneous and Metamorphic Petrology. 2nd edition, Blackwell, England.
  20. BLEIN, O., LAPIERRE, H., & SCHWEICKERT, R.A. (2001): A Permian island-arc with a continental basement: the Black Dyke Formation Nevada, North American Cordillera. (Chemical Geology) 175, 543–566.
  21. BONNET, G., AGARD, P., ANGIBOUST, S., FOURNIER, M., & OMRANI, J. (2019): No large earthquakes in fully exposed subducted seamount. (Geology) 47, 407–410.
  22. CHIU, H.Y., CHUNG, S.L., ZARRINKOUB, M.H., MOHAMMADI, S.S., KHATIB, M.M., IIZUKA, Y. (2013): Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. (Lithos) 162, 70–87.
  23. CLEMENS, J., HOLLOWAY, J.R., & WHITE, A. (1986): Origin of an A-type granite; experimental constraints. Am. (Mineral) 71, 317–324.
  24. COLLINS, W.J., HUANG, H.-Q., BOWDEN, P., & KEMP, A.T.I. (2019): Repeated S-I-A-Type Granite Trilogy in the Lachlan Orogen, and Geochemical Contrasts With A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological society, london, special publications 491 (SP491-2018-2159).
  25. CREASER, R.A., PRICE, R.C., & WORMALD, R.J.(1991): A-type granites revisited - assessment of a residual-source model (Geology) 19, 163–166.
  26. Dabiri, R., Akbari-Mogaddam, M., Ghaffari, M. (2018) Geochemical evolution and petrogenesis of the Eocene Kashmar granitoid rocks, NE Iran: Implications for fractional crystallization and crustal contamination processes. Iranian Journal of Earth Sciences 10(1):68-77.
  27. DALL’AGNOL, R., & DE OLIVEIRA, D.C. (2007): Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. (Lithos) 93, 215–233.
  28. DAVOUDIAN, A.R., GENSER, J., NEUBAUER, F., SHABANIAN, N. (2016): 40 Ar/39 Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogen. (Gondwana Res) 37, 216–240. https:// doi.org/10.1016/j.gr.2016.05.013.
  29. DEEVSALAR, R., GHORBANI, MR., GHADERI, M., AHMADIAN, J., MURATA, M., & OZAWA, H. (2014): Geochemistry and petrogenesis of arc-related to intraplate mafic magmatism from the Malayer-Boroujerd plutonic complex, northern Sanandaj-Sirjan magmatic zone, Iran. Neues Jahrbuch für Geologie und Paläontologie 274, 81-120.
  30. DUCEA, M.N., SALEEBY, J.B., BERGANTZ, G. (2015): The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. (Earth Planet Sciences) 43, 299–331.
  31. EBY, G.N. (1992b): Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. (Geology) 20, 641–644.
  32. ESNA-ASHARI, A., TIEPOLO, M., VALIZADEH, M.V., HASSANZADEH, J., & SEPAHI, A.A. (2012): Geochemistry and zircon U-Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran. (Jurnal of Asian Earth Sciences) 43 (1), 11–22. https://doi.org/ 10.1016/j.jseaes.2011.09.001.
  33. FAN, W.M., GUO, F., WANG, Y.J., & ZHANG, M. (2004): Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? (Chemical Geology) 209, 27–48.
  34. FAZLNIA, A. (2017): Tectonomagmatic setting of the Siahbaz A-type granitoids and mafic intrusions (Northwest of Khoy). (Petrology) No, 30.
  35. FAZLNIA, A., SCHENK, V., VAN DER STRAATEN, F., & MIRMOHAMMADI, M. (2009): Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran. (Lithos) 112 (3–4), 413–433. https://doi.org/10.1016/j. lithos.2009.03.047. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J.,
  36. FROST, C. D. & FROST, B. R. (2011): On Ferroan (A-type) granitoids: their compositional
  37. ariability and modes of origin. (Journal of Petrology) 52(1): 39-53.
  38. FROST, C.D. (2001): A geochemical classification for granitic rocks. (Journal of Petrology) 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
  39. FROST, C.D., FROST, B.R., 1997. Reduced rapakivi-type granites: the tholeiite connection. Geology 25, 647–650.
  40. GHALAMGHASH, J., MIRNEJAD, H., & RASHID, H. (2009): Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-Sirjan zone, NW Iran: A case study from the Alvand pluton. Neues Jahrbuch für Mineralogie-Abhandlungen: (Journal of Mineralogy and Geochemistry) 186(1), 79-93, https://doi.org/100.1127 /0077 -7757/2009/0133.
  41. GHASEMI, A., &TALBOT, C.J.,(2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). (Journal of Asian Earth Sciences) 26:68.
  42. Ghasempour, M.R., Ghazi, J.M., Biabangard, H., Dabiri, R. (2014) Petrogenic significance of the Plio-Quaternary Nehbandan mafic lavas, Eastern Iran. Iranian Journal of Earth Sciences, 6: 133–141.
  43. GILL, R. (2010): Igneous rocks and processes: A practical guide. 1nd edition. Wiley-Blackwell, Malaysia.
  44. GOLONKA, J. (2004): Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. (Tectonophysics) 381: 235–273.
  45. GREBENNIKOV, A.V. (2014): A-type granites and related rocks: petrogenesis and classification. Russ. (Geol. Geophys) 55 (11), 1353–1366. https://doi.org/10.1016/j. rgg.2014.10.011.
  46. HAGHIPOUR, A. (1981): Precambrian in central Iran: lithostratigraphy, structural history and petrology. Iranian Petroleum Institute Bulletin, 81, 1-17.
  47. HASSANZADEH, J., STOCKLI, D.F., HORTON, B.K., AXEN, G.J., STOCKLI, L.D., GROVE, M., SCHMITT, A.K., & WALKER, J.D. (2008): U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement. (Tectonophysics) 451 (1–4), 71–96. https://doi.org/10.1002/2015TC003926.
  48. HE, Y., ZHAO, G., SUN, M., & HAN, Y. (2009): Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: constraints from bulk-rock geochemistry and Sr–Nd isotopic compositi composition. (Lithos) 114, 186–199.
  49. HOFMANN, A.W., JOCHUM, K., SEUFERT, M., & WHITE, W.M. (1986): Nb and Pb in oceanic basalts: new constraints on mantle evolution. (Earth Planet. Sciences Lett) 79, 33–45.
  50. HOSSEINI, M.R., HASSANZADEH, J., ALIREZAEI, S., SUN, W., & LI, C.-Y. (2017): Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: geochemistry and U–Pb zircon geochronology. (Lithos) 284, 296–30.
  51. HUANG, X. L., XU, Y. G., LI, X. H., LI, W. X., LAN, J. B., ZHANG, H. H., LIU, Y. S., WANG, Y. B., LI, H. Y., LUO, Z. Y. & YANG, Q. J. (2008): Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. (Precambrian Research) 165: 190–204.
  52. JAMSHIDI BADR, M., COLLINS, A. S., & MASOUDI, F. (2013): The U-Pb age, geochemistry and tectonic significance of granitoids in the Soursat Complex, Northwest Iran. (Turkish Journal of Earth Sciences) 22(1), 1-31.
  53. KAZEMI, Z., GHASEMI, H., TILHAC, R., GRIFFIN, W., MOGHADAM, H.S., O’REILLY, S., & MOUSIVAND, F. (2019): Late Cretaceous subduction-related magmatism on the southern edge of Sabzevar basin, NE Iran. J. Geol. Soc. 176 (3), 530–552 (jgs2018–2076).
  54. KEPEZHINSKAS, P., DEFANT, M.J., & DRUMMOND, M.S. (1996): Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. (Geochemistry) 60, 1217–1229.
  55. KING, P.L., WHITE, A.J.R., CHAPPELL, B.W., & ALLEN, C.M. (1997): Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. (Journal of Petrology) 38(3), 371-391. doi: 10.1093/petroj/38.3.371, https://doi.org/ 10.1093/petroj/38.3.371.
  56. KIRÁLYA, Á., PORTNERB, D. E., HAYNIEDE, K. L., CHILSON-PARK, B. H., GHOSHG, T., JADAMECDH, M., MAKUSHKINAI, A., MANGAJ, M., MORESIIK, L. & O'FARRELLL, K. A. (2020): The effect of slab gaps on subduction dynamics and mantle upwelling. (Tectonophysics) 785: 228-458.
  57. LI, N-B., NIU, H-C., SHAN, Q., & YANG, W-B. (2015): Two episodes of Late Paleozoic A-type magmatism in the Qunjisayi area, western Tianshan: Petrogenesis and tectonic implications. (Journal of Asian Earth Sciences) 113(1): 238-253.
  58. MAHMOUDI, S., CORFU, F., MASOUDI, F., MEHRABI, B., & MOHAJJEL, M. (2011): U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran. (Journal of Asian Earth Sciences)41, 238–249.
  59. MANIAR, P.D., PICCOLI, P.M. (1989): Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101 (5), 635–643.
  60. MANSOURI ESFAHANI, M., KHALILI, M., KOCHHAR, N., & GUPTA L, N. (2010): A-type granite of the Hasan Robat area (NW of Isfahan, Iran) and its tectonic significance. (Journal of Asian Earth Sciences) 37:207–218.
  61. MAZHARI, S.A., AMINI, S., GHALAMGHASH, J., & BEA, F. (2009a): Petrogenesis of granitic unit of Naqadeh complex, Sanandaj-Sirjan Zone, NW Iran. Arab. J. Geosci. 4, 59–67.
  62. MAZHARI, S.A., BEA, F., AMINI, S., GHALAMGHASH, J., MOLINA, J.F., MONTERO, P., SCARROW, J. H., & WILLIAMS, I.S. (2009b): The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. J. Geol. Soc. Lond. 166, 53–69. https://doi.org/10.1144/0016-76492008-022.
  63. MIDDLEMOST, E.A. (1994): Naming materials in the magma/igneous rock system. (Journal of Asian Earth Sciences). Rev. 37, 215–224.
  64. MOAYYED, M., & HOSSAINZADE, G. (2011): Petrology and petroghraphy of A-type Granitoides of the East-Misho Mountain with theory on its geodynamic importance. (Journal of Mineral Crystal) 3:529–544.
  65. MOHAJJEL, M. & FERGUSSON, C. L. (2014): Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. (International Geology Review) 56: 263–287.
  66. MOHAJJEL, M., & FERGUSSON, C.L. (2000): Dextral transpression in late cretaceous continental collision, Sanandaj-Sirjan Zone, western Iran. (Journal of Structure Geology) 22, 1125–1139.
  67. MOHAJJEL, M., FERGUSSON, C. L. & SAHANDI, M. R. (2003): Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran. (Journal of Asian Earth Sciences) 21: 397– 412.
  68. Mollai, H., Dabiri, R., Torshizian, H.A., Pe-Piper, G., Wang, W. (2021) Upper Neoproterozoic garnet-bearing granites in the Zeber-Kuh region from east central Iran micro plate: Implications for the magmatic evolution in the northern margin of Gondwanaland. Geologica Carpathica 72(6):461-481. DOI: https://doi.org/10.31577/GeolCarp.72.6.2
  69. MONTERO, P., BEA, F., CORRETG´E, L.G., FLOOR, P., & WHITEHOUSE, M.J. (2009): U-Pb ion microprobe dating and Sr and Nd isotope geology of the Galineiro ˜ igneous complex: a model for the peraluminous/peralkaline duality of the Cambro-Ordovician magmatism of Iberia. (Lithos) 107 (3–4), 227–238. https://doi.org/10.1016/j. lithos.2008.10.009.
  70. MORENO, J.A., BALDIM, M.R., SEMPRICH, J., OLIVEIRA, E.P., VERMA, S.K., & TEIXEIRA, W. (2017): Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern S˜ ao Francisco Craton, Brazil. (Precambrian Research) 294, 322–343. https://doi.org/10.1016/j.precamres.2017.04.011.
  71. MORENO, J.A., MOLINA, J.F., BEA, F., ANBAR, M.A., & MONTERO, P. (2016); Th-REE-and Nb-Taaccessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): an assessment for the fractionation of Y/Nb, Th/Nb, La/ Nb and Ce/Pb in highly evolved A-type granites. (Lithos) 258, 173–196. https://doi. org/10.1016/j.lithos.2016.04.020.
  72. MORENO, J.A., MOLINA, J.F., MONTERO, P., ANBAR, M.A., SCARROW, J.H., CAMBESES, A., & BEA, F. (2014): Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai. Egypt. (Lithos) 192, 56–85. https://doi.org/ 10.1016/j.lithos.2014. 01.010.
  73. MOUTHEREAU, F., LACOMBE, O. & VERGÉS, J. (2012): Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. (Tectonophysics) 532-535: 27-60.
  74. N.I.O.C. (NATIONAL IRANIAN OIL COMPANY), (1959): Geological Map of Iran, 1:2,500,000: National Iranian Oil Company.
  75. NABAVI, M. H. (1976): An introduction to the Iranian geology. Geological Survey of Iran, Teran (in Persian).
  76. NAGHIZADEH, R. (2004): 1/100000 Geological Map of Oshnavieh. Geological Survey and Mineral Exploration of Iran, Tehran.
  77. NAKAMURA, N. (1974): Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5), 757-775.
  78. Nazari M., Arian M.A., Solgi A., Zareisahamieh R., Yazdi A. (2023) Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran. Iranian Journal of Earth Sciences 15(4): 228-247. DOI: https://doi.org/10.30495/ijes.2023.1956689.1746
  79. NOURI, F., AZIZI, H., ASAHARA, Y., & STERN, R. (2023); A new perspective on Cenozoic calc-alkaline and shoshonitic volcanic rocks, eastern Saveh (central Iran). (International Geology Review ) Volume 63.
  80. OSKUIE, A. AND HAJIALILU, B. B. (1995): Explanatory text of Qara-Ziaaddin. Geological Quadrangle Map 1:100000, No. 5067. (Geological Survey of Iran) Tehran.
  81. Ousta S.h., Ashja-Ardalan A., Yazdi A., Dabiri R., Arian M.A. (2024) Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin. Geopersia 14 (1): 89-111. DOI: https://doi.org/10.22059/geope.2023.364334.648729
  82. PATIÑO DOUCE, A.E. (1997): Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. (Geology) 25, 743–746.
  83. PAZ, L.F., BECHIS, F., LITVAK, V.D., ECHAURREN, A., ENCINAS, A., GONZÁLEZ, J., LUCASSEN, F., OLIVEROS, V., VALENCIA, V., & FOLGUERA, A. (2019): Constraints on Trenchward Arc Migration and Backarc Magmatism in the North Patagonian Andes in the Context of Nazca Plate Rollback. (Tectonics) 38 (11), 3794–3817.
  84. PEARCE, J.A., & PEATE, D.W. (1995): Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. (Earth Planet Sciences) 23, 251–285.
  85. PEARCE, J.A., HARRIS, N.B., & TINDLE, A.G. (1984): Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. (Journal of Petrology) 25, 956–983.
  86. RAMEZANI, J., TUCKER, R. D. (2003): The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. (American Journal of Science) 303(7), 622- 665.
  87. ROLLINSON, H. R. (1993): Using geochemical data: evaluation, presentation, interpretation. 1st edition, Longman Scientific and Technichal, London.
  88. ROSSETTI, F., NASRABADY, M., THEYE, T., GERDES, A., MONIÉ, P., LUCCI, F., & VIGNAROLI, G. (2014): Adakite differentiation and emplacement in a subduction channel: the late Paleocene Sabzevar magmatism (NE Iran). Bulletin 126, 317–343.
  89. SAKI, A. (2010): Proto-Tethyan remnants in northwest Iran: geochemistry of the gneisses and metapelitic rocks. (Gondwana Research) 17(4), 704-714.
  90. Salehpour S., Arian M.A., Rad A.J., Zarei Sahamieh R., Yazdi A. (2025) Geochemistry and technomagmatic environment of Eocene volcanic rocks in Yuzbashi Chay region, west of Qazvin (Iran). Iranian Journal of Earth Sciences 17(1): 1-13. DOI: https://doi.org/10.57647/j.ijes.2025.1701.04
  91. SAMANI, B. A., ZHUYI, G., XUETAO, G., & CHUAN, T. (1994): Geology of Precambrian in central Iran; On the context of stratigraphy, magmatism and metamorphism. (Geosciences Quarterly) 3(10), 40- 63.
  92. SCHANDL, E. S., & GORTON, M.P. (2002): Application of high field strength elements to discriminate tectonic settings in VMS environments. (Economic Geology) 97: 629-642.
  93. SEPAHI, A.A., SHAHBAZI, H., SIEBEL, W., RANIN, A. (2014): Geochronology of plutonic rocks from the Sanandaj-Sirjan zone, Iran and new zircon and titanite U-Th-Pb ages for granitoids from the Marivan pluton. (Geochronometria) 41, 207–215. https://doi.org/ 10.2478/s13386-013-0156-z.
  94. SHABANIAN, N., DAVOUDIAN, A.R., DONG, Y., & LIU, X. (2018): U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan Zone of western Iran. (Precambrian Research) 306, 41–60. https://doi.org/10.1016/j.precamres.2017.12.037.
  95. SHABANIAN, N., KHALILI, M., DAVOUDIAN, A.R., & MOHAJJEL, M. (2009): Petrography and geochemistry of mylonitic granite from Ghaleh-Dezh, NW Azna, Sanandaj-Sirjan zone, Iran Neues Jahrbuch für Mineralogie-Abhandlungen. (Journal of Mineralogy and Geochemstry) 185 (3), 233–248. https://doi.org/10.1127/0077-7757/2009/0121.
  96. SHAFAII MOGHADAM, H., LI LI , Q., GRIFFIN, W.L., STERN, J., CHIARADIA, O.K., GHORBANI, GH., O'REILLY, S.Y., POURMOHSEN, M. (2020): Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A- and I-type granites and gabbro-diorites from NW Iran. (Lithos), 374-375.
  97. SHAFAII MOGHADAM, H., LI, Q.L., GRIFFIN, W.L., STERN, R.J., ISHIZUKA, O., HENRY, H., LUCCI, F., O’REILLY, S.Y., & GHORBANI, G. (2020a): Repeated magmatic buildup and deep “hot zones” in continental evolution: the Cadomian crust of Iran. (Earth Planet. Sciences) Lett. 531.
  98. SHAHBAZI, H., SIEBEL, W., POURMOAFEE, M., GHORBANI, M., SEPAHI, A.A., SHANG, C.K., VOSOUGHI & ABEDINI, M. (2010): Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): new evidence for Jurassic magmatism. (Journal of Asian Earth Sciences) 9, 668–683. https://doi.org/10.1016/j. jseaes.2003.11.007.
  99. SHAHZEIDI, M., MOAYYED, M., MURATA, M., YUI, T., ARAI, SH., CHENE, F., PIRNIA, T. & AHMADIAN, J. (2016): Late Ediacaran crustal thickening in Iran: Geochemical and isotopic constraints from the ~550 Ma Mishu granitoids (northwest Iran). (International Geology Review) 59, 793-811.
  100. SHELLNUTT, J.G., & ZHOU, M.F. (2007): Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chem. Geol. 243, 286.
  101. SISSON, V.B., & PAVLIS, T.L. (1993): Geologic consequences of plate reorganization: an example from the Eocene southern Alaska forearc. (Geology) 21, 913–916.
  102. SOESOO, A. (1997): Mafic rocks associated with felsic intrusions—A key to understanding granite petrogenesis in SE Australia. (Geological Society of Australia) 46, 27–28.
  103. SOESOO, A. (2000): Printed in Great Britain. Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia ALVAR Vol. 157, 2000, pp. 135–149.
  104. STERN, R. (2023): Arc assembly and continental collision in the Neoproterozoic East African Orogen:implications for the consolidation of Gondwanaland. (Annual review of earth and planetary sciences) 22 (1), 319-351.
  105. STÖCKLIN, J. (1968): Structural history and tectonics of Iran: a review. American Association of Petroleum (Geologists)52: 1229–1258.
  106. SUN, S.S., & MCDONOUGH, W. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
  107. TAHMASEBI, Z., CASTRO, A, KHALILI, M., AHMADI KHALAJI, A., & ROSA, J. (2010) Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran. (Journal of Asian Earth Sciences) 39:81–96.
  108. TEPPER, J.H., NELSON, B.K., BERGANTZ, G.W. AND IRVING, A.J., 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkalinegranitoids by melting of mafic lower crust with variable water fugacity. (Contributions to Mineralogy and Petrology) 113(3): 333–351.
  109. THORKELSON, D.J. (1996): Subduction of diverging plates and the principles of slab window formation. (Tectonophysics) 255, 47–63.
  110. TORKIAN, A., KHALILI, M., & SEPAHI, A.A. (2008): Petrology and geochemistry of the I-type calc-alkaline Qorveh Granitoid Complex, Sanandaj-Sirjan Zone, western Iran. Neues Jahrbuch für Mineralogie-Abhandlungen: (Journal of Mineralogy and Geochemistry) 185 (2), 131–142. https://doi.org/10.1127/0077-7757/2008/0114.
  111. WHALEN, J.B., CURRIE, K.L., & CHAPPELL, B.W. (1987): A-type granites — geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419.
  112. WINDLEY, B.F., & XIAO, W. (2018): Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. (Gondwana Research) 61: 73-87.
  113. YANBO, C., & JINGWEN, M. (2010): Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: constraints on their petrogenesis and tectonic setting. (Lithos) 120 (3–4), 258–276. https://doi.org/10.1016/j.lithos.2010.08.013.
  114. YANG, J.H., WU, F.Y., WILDE, S.A., CHEN, F., LIU, X.M., & XIE, L.W. (2008): Petrogenesis of an alkali Syenite-Granite-Rhyolite suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton: Geochronological, geochemical and Nd-Sr-Hf isotopic evidence for lithospheric thinning. (Journal of Petrology) 49, 315–351.
  115. Yazdi A., ShahHoseini E., Razavi R. (2016) AMS, A method for determining magma flow in Dykes (Case study: Andesite Dyke). Research Journal of Applied Sciences 11(3): 62-67. DOI: http://doi.org/10.3923/rjasci.2016.62.67
  116. ZHANG, Z., XIAO, W., JI, W., MAJIDIFARD, M.R., REZAEIAN, M., TALEBIAN, M., XIANG, D., CHEN, L., WAN, B., AO, S., & ESMAEILI, R. (2018): Geochemistry, zircon U-Pb and Hf isotope for granitoids, NW Sanandaj-Sirjan zone, Iran: implications for MesozoicCenozoic episodic magmatism during Neo-Tethyan lithospheric subduction. (Gondwana Research) 62, 227–245. https://doi.org/10.1016/j.gr.2018.04.002.
  117. ZHENG, Y.F., GONG, B., ZHAO, Z.F., WU, Y.B., & CHEN, F.K. (2008): Zircon U-Pb age and O isotope evidence for Neoproterozoic low-(18)O magmatism during supercontinental rifting in South China: Implications for the snowball Earth event. Am. (Journal of Sciences) 308, 484–516.