10.57647/j.ijes.2025.16852

Automatic Estimation of the Regularization Parameter in the Inversion of Magnetotelluric Data

  1. Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  2. Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
  3. Department of Physics, Faculty of Science, Arak University, Arak, Iran
  4. Faculty of Engineering, Malayer University, Malayer, Iran

Received: 2024-07-05

Revised: 2024-09-26

Accepted: 2024-10-31

Published 2025-05-25

How to Cite

Heiat, A., Meshincni Asl, M., Nejati Kalateh, A., Mirzaei, M., & Rezaie, M. (2025). Automatic Estimation of the Regularization Parameter in the Inversion of Magnetotelluric Data. Iranian Journal of Earth Sciences. https://doi.org/10.57647/j.ijes.2025.16852

PDF views: 61

Abstract

Data inversion is one of the most important and challenging steps in geophysical data analysis. One of the vital issues in doing so is underdeterminacy, that is, the available data being less than the parameters of the model. Tikhonov Regularization, which is done by adding a stabilizing functional to the misfit and making a target function, is one of the most common methods for solving this problem. The important challenge in Tikhonov Regularization is determining the regularization parameter automatically in each iteration. Unbiased Predictive Risk Estimator (UPRE) is one of the usual methods proposed for tackling the mentioned challenge. Due to its high convergence rate and acceptable results in synthetic and real data, especially in geomagnetic and gravity explorations, it has received much attention. Therefore, here, the method above was used for the inversion of the 2D magnetotelluric data, and its results were compared with the methods of Activated Constraint Balancing (ACB) and Discrepancy Principle. To do so, the standard program “MT2DinvMatlab” was used as a basis, which uses the methods Lavenberg-Marquardt and ACB for inversion and automatic estimation of the regularization parameter, respectively. Next, this program was modified to estimate the regularization parameter with both ACB, UPRE, and Discrepancy Principle. In order to compare the results of these methods, a relatively complicated synthetic case and a real case of geothermal exploration in the Sabalan region were employed. Finally, the efficiency of UPRE was established in terms of yielding accurate models, low computation time, and high convergence rate.

Keywords

  • Magnetotelluric,
  • Inversion,
  • Regularization Parameter,
  • ACB,
  • UPRE,
  • Discrepancy Principle

References

  1. Abdelazeem, M., Emary, E., Hassanien, A. E. (2016) A hybrid Bat-regularized Kaczmarz algorithm to solve ill-posed geomagnetic inverse problem. In The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt (pp. 263-272). Springer International Publishing. https://doi.org/10.1007/978-3-319-26690-9_24
  2. Abdelazeem, M., Gobashy, M. M. (2016) A solution to unexploded ordnance detection problem from its magnetic anomaly using Kaczmarz regularization. Interpretation, 4(3), SH61-SH69.https://doi.org/10.1190/INT-2016-0001.1
  3. Afshar, A., Norouzi, G. H., Moradzadeh, A. (2023) Exploring geothermal potential through multi-modal geophysical data integration: gravity, magnetic, and magnetotelluric prospecting. International Journal of Mining and Geo-Engineering, 57(4), 427-434. https://doi.org/10.22059/ijmge.2023.364057.595093
  4. Alavi, M. (2007) Structures of the Zagros fold-thrust belt in Iran. American Journal of science 307(9): 1064-1095. https://doi.org/10.2475/09.2007.02
  5. Aster, R. C., Borchers, B., Thurber, C. H.( 2018) Parameter estimation and inverse problems: Elsevier.
  6. eBook ISBN: 9780128134238. https://doi.org/10.1016/C2009-0-61134-X
  7. Bauer, F., Lukas, M. A. (2011) Comparingparameter choice methods for regularization of ill-posed problems. Mathematics and Computers in Simulation, 81(9), 1795-1841. https://doi.org/10.1016
  8. Constable, S. C., Parker, R. L., Constable, C. G.(1987) Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300. https://doi.org/10.1190/1.1442303
  9. DeGroot-Hedlin, C., Constable, S. (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613-1624. https://doi.org/10.1190/1.1442813
  10. Farquharson, C. G., Oldenburg, D. W.( 2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophysical Journal International, 156(3), 411-425. https://doi.org/10.1111/j.1365-246X.2004.02190.x
  11. Ghaedrahmati, R., Moradzadeh, A., Fathianpour, N., Lee, S. K., Porkhial, S. (2013) 3-D inversion of MT data from the Sabalan geothermal field, Ardabil, Iran. Journal of Applied Geophysics, 93, 12-24. https://doi.org/10.1016/j.jappgeo.2013.03.006
  12. Gobashy, M., Abdelazeem, M., Abdrabou, M., Khalil, M. H. (2021) A hybrid PCG-bat algorithm for 2D gravity inversion: Applications for ore deposits exploration and interpretation of sedimentary basins. Ore Geology Reviews, 139, 104497. https://doi.org/10.1016/j.oregeorev.2021.104497
  13. Haber, E., Oldenburg, D.(2000) A GCV based method for nonlinear ill-posed problems. Computational Geosciences, 4(1), 41-63. https://doi.org/10.1111/j.1365-246X.2004.02190.x
  14. Hansen, P. C.(1998) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion: SIAM. https://doi.org/10.1016/C2009-0-61134-X
  15. Jupp, D. L., Vozoff, K.(1977) Two-dimensional magnetotelluric inversion. Geophysical Journal International, 50(2), 333-352. https://doi.org/10.1590/S0102-261X1997000200003
  16. Kaltenbacher, B., Kirchner, A., Vexler, B.( 2011) Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems. Inverse problems, 27(12), 125008. https://doi.org/10.1088/0266-5611/27/12/125008
  17. Lee, S. K., Kim, H. J., Song, Y., Lee, C.-K.(2009) MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion. Computers&Geosciences,35(8),1722-1734. https://doi.org/10.1016/j.cageo.2008.10.010
  18. McKenzie, D. (1972) Active tectonics of the Mediterranean region." Geophysical Journal International 30(2): 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  19. Mackie, R. L., Madden, T. R.(1993) Three-dimensional magnetotelluric inversion using conjugate gradients. Geophysical Journal International, 115(1), 215-229. https://doi.org/10.1111/j.1365-246X.1993.tb05600.x
  20. Mehanee, S., Zhdanov, M.(2002) Two‐dimensional magnetotelluric inversion of blocky geoelectrical structures. Journal of Geophysical Research: Solid Earth, 107(B4), EPM 2-1-EPM 2-11. https://doi.org/0.1029/2001JB000191, 2002
  21. Menke,W.(2018) Geophysical data analysis: Discrete inverse theory: Academic press. https://doi.org/10.1016/C2016-0-05203-8
  22. Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., Son, J. S., Suh, J. H.(2007) 3D magnetotelluric modelling including surface topography. Geophysical Prospecting, 55(2), 277-287. https://doi.org/10.1111/j.1365-2478.2007.00614.x
  23. Newman, G. A., Alumbaugh, D. L.(2000) Three-dimensional magnetotelluric inversion using non-linear conjugate gradients. Geophysical Journal International, 140(2), 410-424. https://doi.org/10.1046/j.1365-246x.2000.00007.x
  24. Ogawa, Y., Uchida, T. (1996) A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophysical Journal International, 126(1), 69-76. https://doi.org/10.1111/j.1365-246X.1996.tb05267.x
  25. Ogawa, Y.(2002) On two-dimensional modeling of magnetotelluric field data. Surveys in Geophysics, 23(2), 251-273 https://doi.org/10.1023/A:1015021006018
  26. Oskooi, B., Pedersen, L. B., Smirnov, M., Árnason, K., Eysteinsson, H., Manzella, A., Group, D. W.( 2005) The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Physics of the Earth and planetary interiors, 150(1-3), 183-195. https://doi.org/10.1016/j.pepi.2004.08.027
  27. Pilkington, M.( 2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74(1), L7-L15. https://doi.org/10.1190/1.3026538
  28. Rezaie, M., Moradzadeh, A., Nejati Kalateh, A., Aghajani, H.(2018) Automatic estimation of regularization parameter by Unbiased Predictive Risk Estimator (UPRE) method for 3D constrained inversion of magnetic data. JOURNAL OF RESEARCH ON APPLIED GEOPHYSICS, 3(2), 145-154. https://doi.org/10.22044/jrag.2016.601
  29. Rodi, W., Mackie, R. L.(2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1), 174-187. https://doi.org/10.1190/1.1444893
  30. Sasaki, Y.(1989) Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54(2), 254-262. https://doi.org/10.1190/1.1442649
  31. Sasaki, Y.(2004) Three-dimensional inversion of static-shifted magnetotelluric data. Earth, planets and space, 56(2), 239-248. https://doi.org/10.1186/BF03353406
  32. Siripunvaraporn, W., Egbert, G.( 2000) An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65(3), 791-803. https://doi.org/10.1190/1.1444778
  33. Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M.( 2005) Three-dimensional magnetotelluric inversion: data-space method. Physics of the Earth and planetary interiors, 150(1-3), 3-14. https://doi.org/10.1016/j.pepi.2004.08.023
  34. Smith, R. C., Bowers, K. L.(1993) Sinc-Galerkin estimation of diffusivity in parabolic problems. Inverse problems, 9(1), 113. https://doi.org/10.1088/0266-5611/9/1/007
  35. Spichak, V., Manzella, A.(2009) Electromagnetic sounding of geothermal zones. Journal of Applied Geophysics, 68(4), 459-478. https://doi.org/10.1016/j.jappgeo.2008.05.007
  36. Tikhonov, A. N., Arsenin, V. Y.(1977) Solutions of ill-posed problems. New York, 1(30), 487. https://doi.org/10.2307/2006360
  37. Vatankhah, S., Ardestani, V. E., Renaut, R. A.( 2015) Application of the χ2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion. Geophysical Journal International, 200(1), 265-277. https://doi.org/10.1093/gji/ggu397
  38. Vio, R., Ma, P., Zhong, W., Nagy, J., Tenorio, L., Wamsteker, W.( 2004) Estimation of regularization parameters in multiple-image deblurring. Astronomy & Astrophysics, 423(3), 1179-1186. https://doi.org/10.1051/0004-6361:20047113
  39. Vogel, C.( 1985) Numerical solution of a non-linear ill-posed problem arising in inverse scattering. Inverse problems, 1(4), 393. https://doi.org/10.1088/0266-5611/1/4/010
  40. Vogel, C. R.( 2002) Computational methods for inverse problems: SIAM. https://doi.org/10.1137/1.9780898717570
  41. Wahba, G., (1990) Spline models for observational data: SIAM. https://doi.org/10.1137/1.9781611970128
  42. Walker, S. E. (1999). Inversion of em data to recover 1-d conductivity and geometric survey parameter. University of British Columbia. https://doi.org/10.14288/1.0053001
  43. Wannamaker, P. E. (1999). Affordable magnetotellurics: Interpretation in natural environments. In Three-dimensional electromagnetics (pp. 349-374): Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802150.ch22
  44. Xiang, Y., Yu, P., Chen, X., Zhang, X., Tang, R. (2012) A Comparison of different methods for choosing regularization parameter in regularized MT inversion. Paper presented at the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. https://doi.org/10.1109/FSKD.2012.6233848
  45. Yi, M.-J., Kim, J.-H., Chung, S.-H.(2003) Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics, 68(3), 931-941. https://doi.org/10.1190/1.1581045
  46. Zhdanov, M. S. (2002) Geophysical inverse theory and regularization problems (Vol. 36): Elsevier. https://doi.org/ 10.4236/eng.2013.55A010