Automatic Estimation of the Regularization Parameter in the Inversion of Magnetotelluric Data
- Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
- Department of Physics, Faculty of Science, Arak University, Arak, Iran
- Faculty of Engineering, Malayer University, Malayer, Iran
Received: 2024-07-05
Revised: 2024-09-26
Accepted: 2024-10-31
Published 2025-05-25
Copyright (c) -1 Amin Heiat, MirSattar Meshincni Asl, Ali Nejati Kalateh, Mahmoud Mirzaei, Mohammad Rezaie (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 61
Abstract
Data inversion is one of the most important and challenging steps in geophysical data analysis. One of the vital issues in doing so is underdeterminacy, that is, the available data being less than the parameters of the model. Tikhonov Regularization, which is done by adding a stabilizing functional to the misfit and making a target function, is one of the most common methods for solving this problem. The important challenge in Tikhonov Regularization is determining the regularization parameter automatically in each iteration. Unbiased Predictive Risk Estimator (UPRE) is one of the usual methods proposed for tackling the mentioned challenge. Due to its high convergence rate and acceptable results in synthetic and real data, especially in geomagnetic and gravity explorations, it has received much attention. Therefore, here, the method above was used for the inversion of the 2D magnetotelluric data, and its results were compared with the methods of Activated Constraint Balancing (ACB) and Discrepancy Principle. To do so, the standard program “MT2DinvMatlab” was used as a basis, which uses the methods Lavenberg-Marquardt and ACB for inversion and automatic estimation of the regularization parameter, respectively. Next, this program was modified to estimate the regularization parameter with both ACB, UPRE, and Discrepancy Principle. In order to compare the results of these methods, a relatively complicated synthetic case and a real case of geothermal exploration in the Sabalan region were employed. Finally, the efficiency of UPRE was established in terms of yielding accurate models, low computation time, and high convergence rate.
Keywords
- Magnetotelluric,
- Inversion,
- Regularization Parameter,
- ACB,
- UPRE,
- Discrepancy Principle
References
- Abdelazeem, M., Emary, E., Hassanien, A. E. (2016) A hybrid Bat-regularized Kaczmarz algorithm to solve ill-posed geomagnetic inverse problem. In The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt (pp. 263-272). Springer International Publishing. https://doi.org/10.1007/978-3-319-26690-9_24
- Abdelazeem, M., Gobashy, M. M. (2016) A solution to unexploded ordnance detection problem from its magnetic anomaly using Kaczmarz regularization. Interpretation, 4(3), SH61-SH69.https://doi.org/10.1190/INT-2016-0001.1
- Afshar, A., Norouzi, G. H., Moradzadeh, A. (2023) Exploring geothermal potential through multi-modal geophysical data integration: gravity, magnetic, and magnetotelluric prospecting. International Journal of Mining and Geo-Engineering, 57(4), 427-434. https://doi.org/10.22059/ijmge.2023.364057.595093
- Alavi, M. (2007) Structures of the Zagros fold-thrust belt in Iran. American Journal of science 307(9): 1064-1095. https://doi.org/10.2475/09.2007.02
- Aster, R. C., Borchers, B., Thurber, C. H.( 2018) Parameter estimation and inverse problems: Elsevier.
- eBook ISBN: 9780128134238. https://doi.org/10.1016/C2009-0-61134-X
- Bauer, F., Lukas, M. A. (2011) Comparingparameter choice methods for regularization of ill-posed problems. Mathematics and Computers in Simulation, 81(9), 1795-1841. https://doi.org/10.1016
- Constable, S. C., Parker, R. L., Constable, C. G.(1987) Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300. https://doi.org/10.1190/1.1442303
- DeGroot-Hedlin, C., Constable, S. (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613-1624. https://doi.org/10.1190/1.1442813
- Farquharson, C. G., Oldenburg, D. W.( 2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophysical Journal International, 156(3), 411-425. https://doi.org/10.1111/j.1365-246X.2004.02190.x
- Ghaedrahmati, R., Moradzadeh, A., Fathianpour, N., Lee, S. K., Porkhial, S. (2013) 3-D inversion of MT data from the Sabalan geothermal field, Ardabil, Iran. Journal of Applied Geophysics, 93, 12-24. https://doi.org/10.1016/j.jappgeo.2013.03.006
- Gobashy, M., Abdelazeem, M., Abdrabou, M., Khalil, M. H. (2021) A hybrid PCG-bat algorithm for 2D gravity inversion: Applications for ore deposits exploration and interpretation of sedimentary basins. Ore Geology Reviews, 139, 104497. https://doi.org/10.1016/j.oregeorev.2021.104497
- Haber, E., Oldenburg, D.(2000) A GCV based method for nonlinear ill-posed problems. Computational Geosciences, 4(1), 41-63. https://doi.org/10.1111/j.1365-246X.2004.02190.x
- Hansen, P. C.(1998) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion: SIAM. https://doi.org/10.1016/C2009-0-61134-X
- Jupp, D. L., Vozoff, K.(1977) Two-dimensional magnetotelluric inversion. Geophysical Journal International, 50(2), 333-352. https://doi.org/10.1590/S0102-261X1997000200003
- Kaltenbacher, B., Kirchner, A., Vexler, B.( 2011) Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems. Inverse problems, 27(12), 125008. https://doi.org/10.1088/0266-5611/27/12/125008
- Lee, S. K., Kim, H. J., Song, Y., Lee, C.-K.(2009) MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion. Computers&Geosciences,35(8),1722-1734. https://doi.org/10.1016/j.cageo.2008.10.010
- McKenzie, D. (1972) Active tectonics of the Mediterranean region." Geophysical Journal International 30(2): 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
- Mackie, R. L., Madden, T. R.(1993) Three-dimensional magnetotelluric inversion using conjugate gradients. Geophysical Journal International, 115(1), 215-229. https://doi.org/10.1111/j.1365-246X.1993.tb05600.x
- Mehanee, S., Zhdanov, M.(2002) Two‐dimensional magnetotelluric inversion of blocky geoelectrical structures. Journal of Geophysical Research: Solid Earth, 107(B4), EPM 2-1-EPM 2-11. https://doi.org/0.1029/2001JB000191, 2002
- Menke,W.(2018) Geophysical data analysis: Discrete inverse theory: Academic press. https://doi.org/10.1016/C2016-0-05203-8
- Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., Son, J. S., Suh, J. H.(2007) 3D magnetotelluric modelling including surface topography. Geophysical Prospecting, 55(2), 277-287. https://doi.org/10.1111/j.1365-2478.2007.00614.x
- Newman, G. A., Alumbaugh, D. L.(2000) Three-dimensional magnetotelluric inversion using non-linear conjugate gradients. Geophysical Journal International, 140(2), 410-424. https://doi.org/10.1046/j.1365-246x.2000.00007.x
- Ogawa, Y., Uchida, T. (1996) A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophysical Journal International, 126(1), 69-76. https://doi.org/10.1111/j.1365-246X.1996.tb05267.x
- Ogawa, Y.(2002) On two-dimensional modeling of magnetotelluric field data. Surveys in Geophysics, 23(2), 251-273 https://doi.org/10.1023/A:1015021006018
- Oskooi, B., Pedersen, L. B., Smirnov, M., Árnason, K., Eysteinsson, H., Manzella, A., Group, D. W.( 2005) The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Physics of the Earth and planetary interiors, 150(1-3), 183-195. https://doi.org/10.1016/j.pepi.2004.08.027
- Pilkington, M.( 2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74(1), L7-L15. https://doi.org/10.1190/1.3026538
- Rezaie, M., Moradzadeh, A., Nejati Kalateh, A., Aghajani, H.(2018) Automatic estimation of regularization parameter by Unbiased Predictive Risk Estimator (UPRE) method for 3D constrained inversion of magnetic data. JOURNAL OF RESEARCH ON APPLIED GEOPHYSICS, 3(2), 145-154. https://doi.org/10.22044/jrag.2016.601
- Rodi, W., Mackie, R. L.(2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1), 174-187. https://doi.org/10.1190/1.1444893
- Sasaki, Y.(1989) Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54(2), 254-262. https://doi.org/10.1190/1.1442649
- Sasaki, Y.(2004) Three-dimensional inversion of static-shifted magnetotelluric data. Earth, planets and space, 56(2), 239-248. https://doi.org/10.1186/BF03353406
- Siripunvaraporn, W., Egbert, G.( 2000) An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65(3), 791-803. https://doi.org/10.1190/1.1444778
- Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M.( 2005) Three-dimensional magnetotelluric inversion: data-space method. Physics of the Earth and planetary interiors, 150(1-3), 3-14. https://doi.org/10.1016/j.pepi.2004.08.023
- Smith, R. C., Bowers, K. L.(1993) Sinc-Galerkin estimation of diffusivity in parabolic problems. Inverse problems, 9(1), 113. https://doi.org/10.1088/0266-5611/9/1/007
- Spichak, V., Manzella, A.(2009) Electromagnetic sounding of geothermal zones. Journal of Applied Geophysics, 68(4), 459-478. https://doi.org/10.1016/j.jappgeo.2008.05.007
- Tikhonov, A. N., Arsenin, V. Y.(1977) Solutions of ill-posed problems. New York, 1(30), 487. https://doi.org/10.2307/2006360
- Vatankhah, S., Ardestani, V. E., Renaut, R. A.( 2015) Application of the χ2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion. Geophysical Journal International, 200(1), 265-277. https://doi.org/10.1093/gji/ggu397
- Vio, R., Ma, P., Zhong, W., Nagy, J., Tenorio, L., Wamsteker, W.( 2004) Estimation of regularization parameters in multiple-image deblurring. Astronomy & Astrophysics, 423(3), 1179-1186. https://doi.org/10.1051/0004-6361:20047113
- Vogel, C.( 1985) Numerical solution of a non-linear ill-posed problem arising in inverse scattering. Inverse problems, 1(4), 393. https://doi.org/10.1088/0266-5611/1/4/010
- Vogel, C. R.( 2002) Computational methods for inverse problems: SIAM. https://doi.org/10.1137/1.9780898717570
- Wahba, G., (1990) Spline models for observational data: SIAM. https://doi.org/10.1137/1.9781611970128
- Walker, S. E. (1999). Inversion of em data to recover 1-d conductivity and geometric survey parameter. University of British Columbia. https://doi.org/10.14288/1.0053001
- Wannamaker, P. E. (1999). Affordable magnetotellurics: Interpretation in natural environments. In Three-dimensional electromagnetics (pp. 349-374): Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802150.ch22
- Xiang, Y., Yu, P., Chen, X., Zhang, X., Tang, R. (2012) A Comparison of different methods for choosing regularization parameter in regularized MT inversion. Paper presented at the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. https://doi.org/10.1109/FSKD.2012.6233848
- Yi, M.-J., Kim, J.-H., Chung, S.-H.(2003) Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics, 68(3), 931-941. https://doi.org/10.1190/1.1581045
- Zhdanov, M. S. (2002) Geophysical inverse theory and regularization problems (Vol. 36): Elsevier. https://doi.org/ 10.4236/eng.2013.55A010