Fe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: synthesis, characterization and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles

  1. Department of Chemistry, Yazd University, Yazd 89158-13149, Iran.
  2. Department of Chemistry, Faculty of Science, Vali-e-Asr University, Rafsanjan 77176, Iran.

Published in Issue 2024-02-03

How to Cite

Hashemi-Uderji, S., Abdollahi-Alibeik, M., & Ranjbar-Karimi, R. (2024). Fe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: synthesis, characterization and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles. Iranian Journal of Catalysis, 8(4). https://oiccpress.com/ijc/article/view/4023

PDF views: 67

HTML views: 9

Abstract

A three-component process for the one-pot synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles is described by the three-component reaction of aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and malononitrile in the presence of Fe3O4@FSM-16-SO3H as an efficient magnetically recyclable mesoporous catalyst. Folded sheet mesoporous material (FSM-16) was prepared by intercalation of a layered, kanemite type sodium silicate with cetyltrimethylammonium (CTMA) ions in the presence of dispersed Fe3O4. The Fe3O4@FSM-16-SO3H was synthesized by sulfonation of Fe3O4@FSM-16 and characterized by FESEM, XRD, BET, VSM and FT-IR techniques. This protocol suggests benefits in terms of higher yields and short reaction time. In addition, the catalyst could be separated using an external magnet and is reusable many times without any significant loss of activity.

Keywords

  • Fe3O4,
  • Folded sheet mesoporous silica,
  • FSM-16-SO3H,
  • Magnetic nanoparticle,
  • Pyranopyrazoles,
  • Recoverable catalyst. Heterogeneous