skip to main content
Menu
Original Article

Wide-ranging and Violent Volcanic History of a Quiet Transborder Area: Volcanic Geoheritage of the Novohrad–Nógrád UNESCO Global Geopark

Authors

Abstract

The Novohrad–Nógrád UNESCO Global Geopark is the first cross-border geopark located between Slovakia and Hungary, Eastern–Central Europe. “Ancient world without borders” – its motto reflects both the remarkable geodiversity and the strong link between people living on either side of the state border. In this relatively small area, almost all types of eruption products can be found from basaltic through andesitic to rhyolitic, reflecting the wide-ranging volcanism of the Pannonian Basin over the last 20 million years, which were the largest eruptions in Europe at the time. The Ipolytarnóc Site, the gateway of the geopark and possessor of a European- Diploma for Protected Areas, documents when one of these devastating eruption events buried a subtropical-forested area with thick pyroclastic deposits and preserved vertebrate footprints. On the other hand, relatively young eruptions of basaltic magmas occurred in this area that give another specific atmosphere to the geopark. Columnar jointing with concave and convex curvilinear shapes shown both by basalts and andesites is another peculiar natural value. Due to the regional uplift and the associated erosion, most of the volcanic edifices were removed and the root zones of the volcanoes were revealed, giving a special character. The volcanic heritage meets specific cultural and historical heritage, which makes this geopark a particular tourist destination. There are four visitor centers and several nature trails with explanation panels showing concise summaries of the volcanological features in three languages (Hungarian, Slovakian and English). Among the rich indoor and outdoor activities, the annual Volcano Day program in Ipolytarnóc with an interactive volcano show attracts many people. This is an evolving geopark, where continuously renewing attractions serve the geoeducation and geotourism purposes in parallel with geoheritage conservation management.

Read the full text of the article

Keywords

Main Subjects

References

Baktai M, Fejes I, Horváth A. (1964). A Pinuxylon tarnociensis (Tuzson) Greguss évgyűrűinek vizsgálata (Examen des cernes de Pinuxylon tarnociensis (Tuzson) Greguss). Földtani Közlöny. 94: 393–396.
Balen D, Schneider P, Petrinec Z, Radonić G & Pavić G (2023). Cretaceous volcanic rock geosites of the Papuk UNESCO Global Geopark (Croatia): Scientific aspect of geoheritage in geoeducation, geotourism and geoconservation. Geoconservation Research. 6(1): 1–17. https://doi.org/10.30486/gcr.2023.1979814.1122
Bartkó L (1985). Geology of Ipolytarnóc. Geologica Hungarica Series Palaeontologica. 49-71: 49-71.
Bercea R-I, Bălc R, Tămaș A, Filipescu S, Tămaș DM, Guillong M, Szekely SF & Lukács R (2023). Insights into the palaeoenvironments, structure and stratigraphy of the lower Miocene of the Eastern Carpathians Bend Zone, Romania. Geological Quarterly. 67: 1-26. http://dx.doi.org/10.7306/gq.1673
Beudant FS (1822). Voyage minéralogique et geologique en Hongrie pendant l’année 1818 Paris.
Bitschene PR & Schüller A (2011). Geo-education and geopark implementation in the Vulkaneifel European Geopark. In Carena S, Friedrich AM, Lammerer B (Eds) Geological field trips in Central Western Europe. GSA Field Guide 22: 29–34 https://doi.org/10.1130/2011.0022(03)
Bitschene PR (2015). Edutainment with basalt and volcanoes – the Rockeskyller Kopf example in the Westeifel Volcanic Field/Vulkaneifel European Geopark, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 166: 187–193. DOI: 10.1127/zdgg/2015/0029
Bordy E& Sztanó O (2021). Badeni (középső miocén) folyóvízi őskörnyezet a Palócföldön: vulkáni-üledékes rétegsorok a Páris-patak völgyéből. Földtani Közlöny. 151: 159-178. https://doi.org/10.23928/foldt.kozl.2021.151.2.159
Brlek M, Richard Tapster S, Schindlbeck-Belo J, Gaynor SP, Kutterolf S, Hauff F, Georgiev SV, Trinajstić N, Šuica S, Brčić V, Wang K-L, Lee H-Y, Beier C, Abersteiner AB, Mišur I, Peytcheva I, Kukoč D, Németh B, Trajanova M, Balen D, Guillong M, Szymanowski D & Lukács R (2023). Tracing widespread Early Miocene ignimbrite eruptions and petrogenesis at the onset of the Carpathian-Pannonian Region silicic volcanism. Gondwana Research. 116: 40-60. https://doi.org/10.1016/j.gr.2022.12.015
Brown RJ, Branney MJ, Maher C & Dávila-Harris P (2010). Origin of accretionary lapilli within ground-hugging density currents: Evidence from pyroclastic couplets on Tenerife. GSA Bulletin 122: 305-320. https://doi.org/10.1130/B26449.1
Chester DK, Degg M, Duncan AM, Guest JE (2000). The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Global Environmental Change Part B: Environmental Hazards. 2. 89-103. https://doi.org/10.1016/S1464-2867(01)00004-3
Connor CB & Conway FM (2000). Basaltic volcanic fields. In Sigurdsson H, Houghton B, Rymer H, Stix J. & McNutt S. (eds), Encyclopedia of Volcanoes (pp. 331-344). Academic Press.
Csontos L, Nagymarosy A, Horváth F & Kovác M (1992). Tertiary evolution of the Intra-Carpathian area: A model. Tectonophysics. 208: 221-241. https://doi.org/10.1016/0040-1951(92)90346-8
Di Capua A, Barilaro F, Szepesi J, Lukács R, Gál P, Norini G, Sulpizio R, Soós I, Harangi S & Groppelli G (2021). Correlating volcanic dynamics and the construction of a submarine volcanogenic apron: An example from the Badenian (Middle Miocene) of North-Eastern Hungary. Marine and Petroleum Geology. 126: 104944. https://doi.org/10.1016/j.marpetgeo.2021.104944
Dobosi G, Fodor RV & Goldberg SA (1995). Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. In Downes H. & Vaselli O. (eds), Neogene and Related Magmatism in the Carpatho-Pannonian Region. (pp. 199-207). Acta Volcanologica.
Dobosi G, Downes H, Embey-Isztin A & Jenner GA (2003). Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jahrbuch für Mineralogie Abhandlungen. 178: 217-237. Doi: 10.1127/0077-7757/2003/0178-0217
Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS & Scharbert HG (1993). The Petrogenesis of Pliocene Alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. Journal of Petrology. 34: 317-343. Doi: 10.1093/petrology/34.2.317
Erfurt P (2022). Volcano tourism and visitor safety: still playing with fire? a 10-year update. Geoheritage. 14: 56. Doi: 10.1007/s12371-022-00691-y
Erfurt-Cooper P (2011). Geotourism in volcanic and geothermal environments: playing with fire? Geoheritage. 3: 187-193. Doi: 10.1007/s12371-010-0025-6
Erfurt-Cooper P (2014). Volcanic tourist destinations. Springer, Berlin. DOI: 10.1007/978-3-642-16191-9_7
Erfurt-Cooper P, Sigurdsson H & Lopes RMC (2015). Chapter 75 - Volcanoes and Tourism. In Sigurdsson H. (eds), The Encyclopedia of Volcanoes (Second Edition). (pp. 1295-1311). Academic Press: Amsterdam. https://doi.org/10.1016/B978-0-12-385938-9.00075-4
Fodor L, Csontos L, Bada G, Györfi I & Benkovics L (1999). Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of palaeostress data. In Durand B, Jolivet L, Horváth F & Sacchi M (eds), The Mediterranean Basins: Tertiary extension within the Alpine orogen. (pp. 295-334). Geological Society, London, Special Publications. Doi: 10.1144/gsl.sp.1999.156.01.15
Goehring L & Morris SW (2008). Scaling of columnar joints in basalt. Journal of Geophysical Research: Solid Earth. 113. https://doi.org/10.1029/2007JB005018
Green TH (1977). Garnet in silicic liquids and its possible use as a P-T indicator. Contributions to Mineralogy and Petrology. 65: 59-67. Doi: 10.1007/BF00373571
Hably L (1985). Early Miocene plant fossils from Ipolytarnóc, N Hungary. Geologica Hungarica Series Palaeontologica. 44-46: 133-255.
Harangi S (2001). Neogene to Quaternary Volcanism of the Carpathian-Pannonian Region - a review. Acta Geologica Hungarica. 44: 223-258.
Harangi S (2014). Volcanic Heritage of the Carpathian–Pannonian Region in Eastern-Central Europe. In Erfurt-Cooper P (ed). Volcanic tourist destinations.(pp. 103-123) Springer-Verlag Berlin Heidelberg.
Harangi S & Lenkey L (2007). Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. In Beccaluva L, Bianchini G & Wilson M (eds), Cenozoic Volcanism in the Mediterranean Area. (pp. 67–92). Geological Society of America Special Papers 418:67-922418. Doi: 10.1130/2007.2418(04)
Harangi S & Lukács R (2019). A Kárpát-Pannon térség neogén-kvarter vulkanizmusa és geodinamikai kapcsolata. Földtani Közlöny. 149: 197–232. https://doi.org/10.23928/foldt.kozl.2019.149.3.197
Harangi S & Korbély B (2023): The basaltic monogenetic volcanic field of the Bakony–Balaton UNESCO Global Geopark, Hungary: from science to geoeducation and geotourism. Geoconservation Research 6(1).
Harangi S, Downes H, Kósa L, Szabó C, Thirlwall MF, Mason PRD & Mattey D (2001). Almandine Garnet in Calc-alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern–Central Europe): Geochemistry, Petrogenesis and Geodynamic Implications. Journal of Petrology. 42: 1813-1843. Doi: 10.1093/petrology/42.10.1813
Harangi S, Downes H, Thirlwall M & Gméling K (2007). Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe. Journal of Petrology. 48: 2261-2287. Doi: 10.1093/petrology/egm059
Harangi S, Molnár M, Vinkler AP, Kiss B, Jull AJT & Leonard AG (2010). Radiocarbon Dating of the Last Volcanic Eruptions of Ciomadul Volcano, Southeast Carpathians, Eastern-Central Europe. Radiocarbon. 52: 1498-1507. Doi: 10.1017/S0033822200046580
Harangi S, Jankovics MÉ, Sági T, Kiss B, Lukács R & Soós I (2015a). Origin and geodynamic relationships of the Late Miocene to Quaternary alkaline basalt volcanism in the Pannonian basin, eastern–central Europe. International Journal of Earth Sciences. 104: 2007-2032. Doi: 10.1007/s00531-014-1105-7
Harangi S, Lukács R, Schmitt AK, Dunkl I, Molnár K, Kiss B, Seghedi I, Novothny Á & Molnár M (2015b). Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano,east–central Europe, from combined U–Th/He and U–Th zircon geochronology. Journal of Volcanology and Geothermal Research. 301: 66-80. https://doi.org/10.1016/j.jvolgeores.2015.05.002
Harangi S, Molnár K, Schmitt AK, Dunkl I, Seghedi I, Novothny Á, Molnár M, Kiss B, Ntaflos T, Mason PRD & Lukács R (2020). Fingerprinting the Late Pleistocene tephras of Ciomadul volcano, eastern–central Europe. Journal of Quaternary Science. 35: 232-244. https://doi.org/10.1002/jqs.3177
Hetényi G, Taisne B, Garel F, Médard É, Bosshard S & Mattsson HB (2012). Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology. 74: 457-482. Doi: 10.1007/s00445-011-0534-4
Hildreth W & Fierstein J (2012). The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives U.S. Geological Survey Professional Paper 1791, 1–244. DOI: 10.3133/pp1791
Horváth F, Bada G, Szafián P, Tari G, Ádám A & Cloetingh S (2006). Formation and deformation of the Pannonian Basin: constraints from observational data. Geological Society, London, Memoirs. 32: 191-206. doi:10.1144/GSL.MEM.2006.032.01.11
Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T & Wórum G (2015). Evolution of the Pannonian basin and its geothermal resources. Geothermics. 53: 328-352. https://doi.org/10.1016/j.geothermics.2014.07.009
Jugovics L (1940a). A Nógrád—Gömöri bazalthegyek. Természettudományi Közlöny. 71: 421-434.
Jugovics L (1940b). Várgéde és Korláti környékének bazalt és bazalttufa előfordulásai Gömör és Nógrád vármegyékben. Magyar Királyi Földtani Intézet 1939-40. évi jelentése. 693-716.
Jugovics L (1944). Adatok a nógrád-gömöri bazaltterület ismeretéhez. Magyar Királyi Földtani Intézet 1944. évi jelentése. 277-329.
Karátson D (2006). Aspects of Quaternary relief evolution of Miocene volcanic areas in Hungary: A review. Acta Geologica Hungarica. 49: 285-309. 10.1556/AGeol.49.2006.4.1
Karátson D, Biró T, Portnyagin M, Kiss B, Paquette J-L, Cseri Z, Hencz M, Németh K, Lahitte P, Márton E, Kordos L, Józsa S, Hably L, Müller S & Szarvas I (2022). Large-magnitude (VEI ≥ 7) ‘wet’ explosive silicic eruption preserved a Lower Miocene habitat at the Ipolytarnóc Fossil Site, North Hungary. Scientific Reports. 12: 9743. Doi: 10.1038/s41598-022-13586-3
Kereszturi G & Németh K (2011). Eruptive volume estimates for Agár-tető (Bakony-Balaton Highland Volcanic Field, Hungary) and Medvedia/Medves (Novohrad-Gemer/Nógrád-Gömör Volcanic Field, Slovakia/Hungary) volcanoes. Proceedings of the “International Field Workshop on New Advances on Maar - Diatreme Research; Results and Perspectives” Somoskőújfalu, Hungary, 9 - 14 May, 2011, pp. 39–46.
Kereszturi G, Németh K, Csillag G, Balogh K & Kovács J (2011). The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. Journal of Volcanology and Geothermal Research. 201: 227-240. https://doi.org/10.1016/j.jvolgeores.2010.08.018
Koneĉný V, Lexa J, Balogh K & Koneĉný P (1995a). Alkali basalt volcanism in southern Slovakia: volcanic forms and time evolution. In Downes H. & Vaselli O. (eds), Neogene and Related Magmatism in the Carpatho-Pannonian Region. (pp. 167–171). Acta Vulcanologica.
Konečný V, Lexa J & Hojstricová V (1995b). The Central Slovakia Neogene volcanic field: a review. In Downes H. & Vaselli O  (eds), Neogene and Related Magmatism in the Carpatho-Pannonian Region (pp. 63-78). Acta Vulcanologica.
Koneĉný V, Lexa J & Balogh K (1999). Neogene-Quaternary alkali basalt volcanism of Slovakia; review of volcanic forms and evolution. Geolines. 9: 67-75.
Konečný V, Kováč M, Lexa J & Šefara J (2002). Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Special Publication Series. 1: 105-123.
Kordos L (1985). Footprints in Lower Miocene sandstone of Ipolytarnóc. Geologica Hungarica Series Palaeontologica. 44-46: 359-415.
Kordos L, Meszaros I & Szarvas I (2021). Tracking a “Prehistoric Pompeii”, Rhinoland and crocodilia: New discoveries and Interpretations of Ipolytarnóc (N Hungary) Lower Miocene Track Site. Geoconservation Research. 4: 621-634. Doi: 10.30486/gcr.2021.1914158.1062
Kovács I, Zajacz Z & Szabó C (2004). Type-II xenoliths and related metasomatism from the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian region (northern Hungary–southern Slovakia). Tectonophysics. 393: 139-161. https://doi.org/10.1016/j.tecto.2004.07.032
Lantai C (1991). Genetics of garnets from andesites of the Karancs Mountains. Acta Geologica Hungarica. 34: 133-154.
Lexa J & Konečny V (1974). The Carpathian Volcanic Arc: a discussion. Acta Geol. Acad. Sci. Hung. 18: 279-294. 
Lexa J & Koneĉný V (1998). Geodynamic aspects of the Neogene to Quaternary volcanism. In Rakús M. (eds), Geodynamic development of the Western Carpathians. (pp. 219–240). Geologická služba SR, Bratislava.
Lexa J, Seghedi I, Németh K, Szakács A, Koneĉny V, Pécskay Z, Fülöp A & Kovacs M (2010). Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review. Open Geosciences. 2: 207-270. doi:10.2478/v10085-010-0024-5
Liptai N, Patkó L, Kovács IJ, Hidas K, Pintér Z, Jeffries T, Zajacz Z, O’Reilly SY, Griffin WL, Pearson NJ & Szabó C (2017). Multiple Metasomatism beneath the Nógrád–Gömör Volcanic Field (Northern Pannonian Basin) Revealed by Upper Mantle Peridotite Xenoliths. Journal of Petrology. 58: 1107-1144. Doi: 10.1093/petrology/egx048
Liptai N, Hidas K, Tommasi A, Patkó L, Kovács IJ, Griffin WL, O'Reilly SY, Pearson NJ & Szabó C (2019). Lateral and Vertical Heterogeneity in the Lithospheric Mantle at the Northern Margin of the Pannonian Basin Reconstructed From Peridotite Xenolith Microstructures. Journal of Geophysical Research: Solid Earth. 124: 6315-6336. https://doi.org/10.1029/2018JB016582
Lukács R, Harangi S, Bachmann O, Guillong M, Danišík M, Buret Y, von Quadt A, Dunkl I, Fodor L, Sliwinski J, Soós I & Szepesi J (2015). Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contributions to Mineralogy and Petrology. 170: 52. Doi: 10.1007/s00410-015-1206-8
Lukács R, Harangi S, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I & Zimmerer M (2018). Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth-Science Reviews. 179: 1-19. https://doi.org/10.1016/j.earscirev.2018.02.005
Lukács R, Guillong M, Bachmann O, Fodor L & Harangi S (2021). Tephrostratigraphy and Magma Evolution Based on Combined Zircon Trace Element and U-Pb Age Data: Fingerprinting Miocene Silicic Pyroclastic Rocks in the Pannonian Basin. Frontiers in Earth Science. 9. Doi: 10.3389/feart.2021.615768
Lukács R, Harangi S, Gál P, Szepesi J, Di Capua A, Norini G, Sulpizio R, Groppelli G & Fodor L (2022). Formal Definition and Description of Lithostratigraphic Units related to the Miocene Silicic Pyroclastic Rocks Outcropping in Northern Hungary: A Revision. Geologica Carpathica. 73: 137-158. https://doi.org/10.31577/GeolCarp.73.2.3
Németh K (2010). Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In Cañón-Tapia E & Szakács A (eds), What Is a Volcano?  (pp. 43-66). Special Paper of the Geological Society of America. Doi: 10.1130/2010.2470(04)
Németh K (2022). Volcanic geoheritage in the light of volcano geology. In Dóniz-Páez J. & Pérez N. M. (eds), El Hierro Island Global Geopark: Diversity of Volcanic Heritage for Geotourism (pp. 1-24). Springer. https://doi.org/10.1007/978-3-031-07289-5_1
Nunes JC (2022). Geoparks in Volcanic Areas in Europe (pp. 1–49). Nova Gráfica Lda
Pál M & Albert G (2023). From geodiversity assessment to geosite analysis – a GIS-aided workflow from the Bakony-Balaton UNESCO Global Geopark, Hungary. Geological Society, London, Special Publications. 530: SP530-2022-126. doi:10.1144/SP530-2022-126
Pálfy J, Mundil R, Renne PR, Bernor RL, Kordos L & Gasparik M (2007). U–Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications. Earth and Planetary Science Letters. 258: 160-174. https://doi.org/10.1016/j.epsl.2007.03.029
Patkó L, Liptai N, Kovács IJ, Aradi LE, Xia Q-K, Ingrin J, Mihály J, O'Reilly SY, Griffin WL, Wesztergom V & Szabó C (2019). Extremely low structural hydroxyl contents in upper mantle xenoliths from the Nógrád-Gömör Volcanic Field (northern Pannonian Basin): Geodynamic implications and the role of post-eruptive re-equilibration. Chemical Geology. 507: 23-41. https://doi.org/10.1016/j.chemgeo.2018.12.017
Patkó L, Liptai N, Aradi LE, Klébesz R, Sendula E, Bodnar RJ, Kovács IJ, Hidas K, Cesare B, Novák A, Trásy B & Szabó C (2020). Metasomatism-induced wehrlite formation in the upper mantle beneath the Nógrád-Gömör Volcanic Field (Northern Pannonian Basin): Evidence from xenoliths. Geoscience Frontiers. 11: 943-964. https://doi.org/10.1016/j.gsf.2019.09.012
Patkó L, Novák A, Klébesz R, Liptai N, Lange TP, Molnár G, Csontos L, Wesztergom V, Kovács IJ & Szabó C (2021). Effect of metasomatism on the electrical resistivity of the lithospheric mantle – An integrated research using magnetotelluric sounding and xenoliths beneath the Nógrád-Gömör Volcanic Field. Global and Planetary Change. 197: 103389. https://doi.org/10.1016/j.gloplacha.2020.103389
Petronis MS, Brister AR, Rapprich V, van Wyk de Vries B, Lindline J & Misurec J (2015). Emplacement history of the Trosky basanitic volcano (Czech Republic): paleomagnetic, rock magnetic, petrologic, and anisotropy of magnetic susceptibility evidence for lingering growth of a monogenetic volcano. Journal of Geosciences. 60: 129-147. http://doi.org/10.3190/jgeosci.196
Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečny V, Zelenka T, Kovacs M, Póka T, Fulop A, Márton E, Panaiotu C & Cvetkovic V (2006). Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica. 57: 511-530.
Pintér Z, Horváth G, Jakab G & Karancsi Z (2015). Rhyolite Badland at Kazár. In Lóczy D. (eds), Landscapes and Landforms of Hungary. (pp. 149-155). Springer International Publishing: Cham. Doi: 10.1007/978-3-319-08997-3_18
Póka T, Zelenka T, Seghedi I, Pécskay Z & Márton E (2004). Miocene volcanism of the Cserhát Mts. (N. Hungary): integrated volcano-tectonic, geochronologic and petrochemical study. Acta Geologica Hungarica. 47: 227-246. Doi: 10.1556/ageol.47.2004.2-3.7
Rapprich V, Valenta J, Brož M, Kadlecová E, van Wyk de Vries B, Petronis MS, Rojík P & (2019). A Crucial Site in the Argument Between Neptunists and Plutonists: Reopening of the Historical Adit in the Komorní hůrka (Kammerbühl) Volcano After 180 Years. Geoheritage. 11: 347-358. https://doi.org/10.1007/s12371-018-0286-z
Rocholl A, Schaltegger U, Gilg HA, Wijbrans J & Böhme M (2018). The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. International Journal of Earth Sciences. 107: 387-407. Doi: 10.1007/s00531-017-1499-0
Šarinová K, Rybár S, Jourdan F, Frew A, Mayers C, Kováčová M, Lichtman B, Nováková P & M K (2021). 40Ar/39Ar geochronology of Burdigalian paleobotanical localities in the central Paratethys (south Slovakia). Geologica Acta. 19: 1-19. https://doi.org/10.1344/GeologicaActa2021.19.5
Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Roşu E, Pécskay Z, Márton E & Panaiotu C (2004). Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos. 72: 117-146. https://doi.org/10.1016/j.lithos.2003.08.006
Seghedi I & Downes H (2011). Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Research. 20: 655-672. https://doi.org/10.1016/j.gr.2011.06.009
Šegvić B, Lukács R, Mandic O, Strauss P, Badurina L, Guillong M & Harzhauser M (2023). U–Pb zircon age and mineralogy of the St Georgen halloysite tuff shed light on the timing of the middle Badenian (mid-Langhian) transgression, ash dispersal and palaeoenvironmental conditions in the southern Vienna Basin, Austria. Journal of the Geological Society. 180. Doi: 10.1144/jgs2022-106
Šimon L & Halouzka R (1996). Pútikov vrsok volcano - the youngest volcano in the Western Carpathians. Slovak Geological Magazine. 2: 103-123.
Šimon L & Maglay J (2005). Dating of sediments underlying the Putikov vŕšok volcano lava flow by the OSL method. Mineralia Slovaca. 37: 279-281.
Small C & Naumann T (2001). The global distribution of human population and recent volcanism. Global Environmental Change Part B: Environmental Hazards. 3: 93-109. https://doi.org/10.1016/S1464-2867(02)00002-5
Sparks RSJ, Aspinall WP, Crosweller HS & Hincks TK (2013). Risk and uncertainty assessment of volcanic hazards. In Rougier J, Sparks RSJ, Hill LJ (Eds.) Risk and Uncertainty Assessment for Natural Hazards (pp. 364-397). Cambridge University Press. https://doi.org/10.1017/CBO9781139047562.012
Szabó C, Harangi S & Csontos L (1992). Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophysics. 208: 243-256. https://doi.org/10.1016/0040-1951(92)90347-9
Szabó C & Taylor LA (1994). Mantle petrology and geochemistry beneath the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region. International Geology Review. 36: 328-358. Doi: 10.1080/00206819409465465
Szabó C & Bodnar RJ (1995). Chemistry and origin of mantle sulfides in spinel peridotite xenoliths from alkaline basaltic lavas, Nógraád-Gömör Volcanic Field, northern Hungary and southern Slovakia. Geochimica et Cosmochimica Acta. 59: 3917-3927. https://doi.org/10.1016/0016-7037(95)00265-2
Szabó C & Bodnar R (1996). Changing magma ascent rates in the Nógrád‐Gömör Volcanic Field Northern Hungary/Southern Slovakia: Evidence from CO2‐richfluid inclusions in metasomatized upper mantle xenoliths. Petrology. 4: 221–230.
Szarvas I (2007). Case study of the Ipolytarnoc track site, Hungary. In Lucas S G, Spielmann JA & Lockley MG(eds), Cenozoic Vertebrate Tracks and Traces. (pp. 303-307). New Mexico Museum of Natural History and Science Bulletin.
Szepesi J, Harangi S, Ésik Z, Novák TJ, Lukács R & Soós I (2017). Volcanic geoheritage and geotourism perspectives in Hungary: a case of an UNESCO World Heritage Site, Tokaj Wine Region Historic Cultural Landscape, Hungary. Geoheritage. 9: 329-349. Doi: 10.1007/s12371-016-0205-0
Tari G, Dövényi P, Dunkl I, Horváth F, Lenkey L, Stefanescu M, Szafián P & Tóth T (1999). Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. Geological Society, London, Special Publications. 156: 215-250. doi:10.1144/GSL.SP.1999.156.01.12
Toramaru A & Matsumoto T (2004). Columnar joint morphology and cooling rate: A starch-water mixture experiment. Journal of Geophysical Research: Solid Earth. 109. https://doi.org/10.1029/2003JB002686
Valentine GA & Perry FV (2007). Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth and Planetary Science Letters. 261: 201-216. https://doi.org/10.1016/j.epsl.2007.06.029
Valentine GA & Connor CB (2015). Chapter 23 - Basaltic Volcanic Fields. In Sigurdsson H (eds), The Encyclopedia of Volcanoes (Second Edition). (pp. 423-439). Academic Press: Amsterdam. https://doi.org/10.1016/B978-0-12-385938-9.00023-7
Vass D, Elecko M & Konečný V (1997). Alginite, a raw material for environmental control. Geology Today. 13: 149-153. https://doi.org/10.1046/j.1365-2451.1997.00012.x
Vass D, Koneĉný V, Elecko M, Kozac J, Molnar A & Zakovic M (1998). Lozisko diatomitu v bazaltovom maare pri Jelsovci a moznosti jeho vyuzitia. Mineralia Slovaca. 30: 333–356.
Vass DI, Konecný V, Tunyi IG, Dolinský PE, Balogh KA, Hudácková NA, Kovácová-Slamková MA & Belácek BO.(2000). Origin of the Pliocene vertebrate bone accumulation at Hajnácka, southern Slovakia. Geologica Carpathica. 51: 69-82.
Zajacz Z & Szabó C (2003). Origin of sulfide inclusions in cumulate xenoliths from Nógrád–Gömör Volcanic Field, Pannonian Basin (north Hungary/south Slovakia). Chemical Geology. 194: 105-117. https://doi.org/10.1016/S0009-2541(02)00273-5
Zajacz Z, Kovács I, Szabó C, Halter W & Pettke T (2007). Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: a Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology. 48: 853-883. Doi: 10.1093/petrology/egm004
Zelenka T, Póka T, Márton E & Pécskay Z (2004). A Tari Dácittufa Formáció típuszelvényének felülvizsgálata. Magyar Állami Földtani Intézet Évi Jelentése.
Zipser CA (1817). Versuch eines topographisch-mineralogischen Handbuches von Ungarn Carl Friedrich Wigand, Oedenburg.
Zouros N.(2004). The European Geoparks Network. Episodes. 27: 165–171. https://doi.org/10.18814/epiiugs/2004/v27i3/002