skip to main content
Menu
Original Article

The Basaltic Monogenetic Volcanic Field of the Bakony–Balaton UNESCO Global Geopark, Hungary: From Science to Geoeducation and Geotourism

Authors

Abstract

As a part of the long-standing volcanism of the Carpathian–Pannonian Region, a basaltic monogenetic volcanic field developed here from 8–2.3 Ma. This is a specific type of volcanism, when mostly a small volume of magma erupts intermittently and always in a new place. The Bakony–Balaton Uplands area is an excellent natural laboratory, where several unique volcanological features can be observed and which provides an insight into how such volcanism is taking place. This volcanic field consists of more than 50 volcanic centers and almost all volcanic eruption types characterizing basalt volcanism can be recognized here, such as hydrovolcanic (phreatic to phreatomagmatic) eruptions and magmatic (Strombolian and Hawaiian) explosive eruptions with proximal and distal pyroclastic deposits, clastogenetic lava, valley-channeled lava flow, lava lake and vent-filling basalts. Since significant uplift and erosion occurred after the volcanism, the original volcanic edifices have been variously eroded, enabling the unique exposure even of the vent and conduit sections. The lava lake and valley-filled basalts were resistant to erosion that resulted in an inverted morphology landscape. Building on scientific results gained from petrological and volcanological studies for more than a century, the Bakony–Balaton UNESCO Global Geopark makes a great effort to transfer this knowledge to geoeducation and geotourism development. This includes volcanological nature trails over 40 km in length and visitor centers with exhibitions designed not only to unravel the nature of volcanic processes, but also to serve as entertainment and recreation. This is accomplished by regular guided outdoor activities led by certified local partners, who successfully passed the geopark geotour-guide training courses.

Read the full text of the article

Keywords

Main Subjects

References

Auer A, Martin U & Németh K (2007). The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex – Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. Journal of Volcanology and Geothermal Research. 159: 225-245. https://doi.org/10.1016/j.jvolgeores.2006.06.008
Bali E, Zajacz Z, Kovács I, Szabó C, Halter W, Vaselli O, Török K & Bodnar RJ (2008). A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab. Journal of Petrology. 49: 421-439. 10.1093/petrology/egm086
Bali E, Falus G, Szabó C, Peate DW, Hidas K, Török K & Ntaflos T (2007). Remnants of boninitic melts in the upper mantle beneath the central Pannonian Basin? Mineralogy and Petrology. 90: 51-72. 10.1007/s00710-006-0167-z
 
Bali E, Szabó C, Vaselli O & Török K (2002). Significance of silicate melt pockets in upper mantle xenoliths from the Bakony–Balaton Highland Volcanic Field, Western Hungary. Lithos. 61: 79-102. https://doi.org/10.1016/S0024-4937(01)00075-5
Balogh K, Árva-Sós E, Pécskay Z & Ravasz-Baranyai L (1986). K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineralogica et Petrographica Szeged 28: 75-93.
Balogh K, Jámbor Á, Partényi Z, Ravasz-Baranyai L & Solti G (1982). A dunántúli bazaltok K/Ar radiometrikus kora. MÁFI Évi Jelentése 1980-ról. 243-260.
Budai T, Császár G, Csillag G, Dudko A, koloszár L & Majoros Gy (1999). A Balaton-felvidék földtana. Magyarázó a Balaton-felvidék földtani térképéhez, 1: 50 000. Magyar Állami Földtani Intézet, Budapest
Busby-Spera CJ & White JDL (1987). Variation in peperite textures associated with differing host-sediment properties. Bulletin of Volcanology. 49: 765-776. https://doi.org/10.1007/BF01079827
 Connor CB & Conway FM (2000). Basaltic volcanic fields. In Sigurdsson H, Houghton B, Rymer H, Stix J & McNutt S (eds), Encyclopedia of Volcanoes. (pp. 331-344). Academic Press.
Crowe BM & Wilfred WJ (1980). Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin. USGS Open-File Report. 80-357. Doi: 10.3133/ofr80357
Crowe BM, Self  S, Vaniman D, Amos R & Perry F (1983). Aspects of Potential Magmatic Disruption of a High-Level Radioactive Waste Repository in Southern Nevada. The Journal of Geology. 91: 259-276. https://www.jstor.org/stable/30062112
 Dibacto S, Lahitte P, Karátson D, Hencz M, Szakács A, Biró T, Kovács I & Veres D (2020). Growth and erosion rates of the East Carpathians volcanoes constrained by numerical models: Tectonic and climatic implications. Geomorphology. 368: 107352. https://doi.org/10.1016/j.geomorph.2020.107352
Downes H, Embey-Isztin A & Thirlwall MF (1992). Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contributions to Mineralogy and Petrology. 109: 340-354. Doi:10.1007/bf00283323
Dufek J, Esposti Ongaro T & Roche O (2015). Chapter 35 - Pyroclastic Density Currents: Processes and Models. In Sigurdsson H. (eds), The Encyclopedia of Volcanoes (Second Edition). (pp. 617-629). Academic Press, Amsterdam. https://doi.org/10.1016/B978-0-12-385938-9.00035-3
Embey-Isztin A (1976a). Amphibolite/lherzolite composite xenolith from Szigliget, north of the lake Balaton, Hungary. Earth and Planetary Science Letters. 31: 297-304. https://doi.org/10.1016/0012-821X(76)90223-5
Embey-Isztin A (1976b). Felsőköpeny eredetű lherzolit zárványok a magyarországi alkáli olivinbazaltos, bazanitos vulkanizmus kőzeteiben. Földtani Közlöny. 106: 42-51.
Embey-Isztin  A, Scharbert Hg, Dietrich H & Poultidis H (1989). Petrology and Geochemistry of Peridotite Xenoliths in Alkali Basalts from the Transdanubian Volcanic Region, West Hungary. Journal of Petrology. 30: 79-105. Doi: 10.1093/petrology/30.1.79
Embey-Isztin A, Scharbert HG, Dietrich H & Poultidis H (1990). Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Mineralogical Magazine. 54: 463-483. 10.1180/minmag.1990.054.376.12
Embey-Isztin A, Dobosi G, Altherr R & Meyer HP (2001). Thermal evolution of the lithosphere beneath the western Pannonian Basin: evidence from deep-seated xenoliths. Tectonophysics. 331: 285-306. https://doi.org/10.1016/S0040-1951(00)00287-0
Erfurt P (2022). Volcano Tourism and Visitor Safety: Still Playing with Fire? A 10-Year Update. Geoheritage. 14: 56. Doi: 10.1007/s12371-022-00691-y
Erfurt-Cooper P (2011). Geotourism in Volcanic and Geothermal Environments: Playing with Fire? Geoheritage. 3: 187-193. Doi: 10.1007/s12371-010-0025-6
Erfurt-Cooper P (2014). Volcanic tourist destinations. Springer, Berlin.
Erfurt-Cooper P, Sigurdsson H & Lopes RMC (2015). Chapter 75 - Volcanoes and Tourism. In Sigurdsson H. (eds), The Encyclopedia of Volcanoes (Second Edition). (pp. 1295-1311). Academic Press, Amsterdam. https://doi.org/10.1016/B978-0-12-385938-9.00075-4
Ertekin C, Ekinci YL, Büyüksaraç A & Ekinci R (2021). Geoheritage in a Mythical and Volcanic Terrain: an Inventory and Assessment Study for Geopark and Geotourism, Nemrut Volcano (Bitlis, Eastern Turkey). Geoheritage. 13: 73. Doi: 10.1007/s12371-021-00593-5
Falus G, Tommasi A, Ingrin J & Szabó C (2008). Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth and Planetary Science Letters. 272: 50-64. https://doi.org/10.1016/j.epsl.2008.04.035
 
Falus G, Szabó C, Kovács I, Zajacz Z & Halter W (2007). Symplectite in spinel lherzolite xenoliths from the Little Hungarian Plain, Western Hungary: A key for understanding the complex history of the upper mantle of the Pannonian Basin. Lithos. 94: 230-247. https://doi.org/10.1016/j.lithos.2006.06.017
 
Falus G, Szabó C & Vaselli O (2000). Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry. Terra Nova. 12: 295-302. https://doi.org/10.1046/j.1365-3121.2000.00313.x
Francis PW & Wells GL (1988). Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bulletin of Volcanology. 50: 258-278. Doi: 10.1007/BF01047488
Futó J, Korbély B, N. B & Kenyeres Z (2015). Halom-hegyi vulkán tanösvény. (pp 1–34) Mencshely Község Önkormányzata, Veszprém.
Goehring L & Morris SW (2008). Scaling of columnar joints in basalt. Journal of Geophysical Research: Solid Earth. 113. https://doi.org/10.1029/2007JB005018
Harangi R & Harangi S (1995). Volcanological study of the Neogene basaltic volcano of Saghegy (Little Hungarian Plain volcanic field, western Hungary). In Downes H. & Vaselli O. (eds), Neogene and related volcanism in the Carpatho-Pannonian Region. (pp. 189-197.). Acta Volcanologica (vol. 7).
Harangi S (2001). Neogene to Quaternary Volcanism of the Carpathian-Pannonian Region - a review. Acta Geologica Hungarica. 44: 223-258.
Harangi S (2014). Volcanic Heritage of the Carpathian–Pannonian Region in Eastern-Central Europe. In Erfurt-Cooper P (Ed) Volcanic Tourist Destinations, Geoheritage, Geoparks and Geotourism. (pp. 103–123) Springer-Verlag Berlin Heidelberg. Doi: 10.1007/978-3-642-16191-9_7
Harangi S (2019). Volcanic Geoheritage. On the volcanic trails of Bakony–Balaton UNESCO Global Geopark, Hungary. (pp. 1–32) Balaton Uplands National Park Directorate, Csopak.
Harangi S & Lukács R (2019). A Kárpát-Pannon térség neogén-kvarter vulkanizmusa és geodinamikai kapcsolata. Földtani Közlöny. 149: 197–232. https://doi.org/10.23928/foldt.kozl.2019.149.3.197
Harangi S, Downes H, Thirlwall M & Gméling K (2007). Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe. Journal of Petrology. 48: 2261-2287. Doi: 10.1093/petrology/egm059
Harangi S & Lenkey L (2007). Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. In Beccaluva L, Bianchini G & Wilson M (eds), Cenozoic Volcanism in the Mediterranean Area. (pp. 67–92). Geological Society of America Special Paper 418. Doi: 10.1130/2007.2418(04)
Harangi S, Sági T, Seghedi I & Ntaflos T (2013). Origin of basaltic magmas of Perşani volcanic field, Romania: A combined whole rock and mineral scale investigation. Lithos. 180-181: 43-57. https://doi.org/10.1016/j.lithos.2013.08.025
Harangi S, Jankovics MÉ, Sági T, Kiss B, Lukács R & Soós I (2015). Origin and geodynamic relationships of the Late Miocene to Quaternary alkaline basalt volcanism in the Pannonian basin, eastern–central Europe. International Journal of Earth Sciences. 104: 2007-2032. Doi: 10.1007/s00531-014-1105-7
Harangi S, Molnár M, Vinkler AP, Kiss B, Jull AJT & Leonard AG (2016). Radiocarbon Dating of the Last Volcanic Eruptions of Ciomadul Volcano, Southeast Carpathians, Eastern-Central Europe. Radiocarbon. 52: 1498-1507. Doi: 10.1017/S0033822200046580
Harangi S, Molnár K, Schmitt AK, Dunkl I, Seghedi I, Novothny Á, Molnár M, Kiss B, Ntaflos T, Mason PRD & Lukács R (2020). Fingerprinting the Late Pleistocene tephras of Ciomadul volcano, eastern–central Europe. Journal of Quaternary Science. 35: 232-244. https://doi.org/10.1002/jqs.3177
Hetényi G, Taisne B, Garel F, Médard É, Bosshard S & Mattsson HB (2012). Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology. 74: 457-482. Doi: 10.1007/s00445-011-0534-4
Hidas K, Falus G, Szabó C, Szabó PJ, Kovács I & Földes T (2007). Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics. 43: 484-503. https://doi.org/10.1016/j.jog.2006.10.007
 
Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T & Wórum G (2015). Evolution of the Pannonian basin and its geothermal resources. Geothermics. 53: 328-352. https://doi.org/10.1016/j.geothermics.2014.07.009
 
Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Grenerczy G, Síkhegyi F, Szafián P, Székely B, Timár G, Tóth L & Tóth T (2006). A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó. Magyar Geofizika 47/4: 133-137.
Hopkins JL, Smid ER, Eccles JD, Hayes JL, Hayward BW, McGee LE, van Wijk K, Wilson TM, Cronin SJ, Leonard GS, Lindsay JM, Németh K & Smith IEM (2020). Auckland Volcanic Field magmatism, volcanism, and hazard: a review. New Zealand Journal of Geology and Geophysics. 64: 213-234. Doi: 10.1080/00288306.2020.1736102
 
Jankovics MÉ, Sági T, Astbury RL, Petrelli M, Kiss B, Ubide T, Németh K, Ntaflos T & Harangi S (2019). Olivine major and trace element compositions coupled with spinel chemistry to unravel the magmatic systems feeding monogenetic basaltic volcanoes. Journal of Volcanology and Geothermal Research. 369: 203-223. https://doi.org/10.1016/j.jvolgeores.2018.11.027
Jankovics MÉ, Harangi S, Németh K, Kiss B & Ntaflos T (2015). A complex magmatic system beneath the Kissomlyó monogenetic volcano (western Pannonian Basin): evidence from mineral textures, zoning and chemistry. Journal of Volcanology and Geothermal Research. 301: 38-55. https://doi.org/10.1016/j.jvolgeores.2015.04.010
 
Jankovics MÉ, Dobosi G, Embey-Isztin A, Kiss B, Sági T, Harangi S & Ntaflos T (2013). Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin. Bulletin of Volcanology. 75: 1-23. Doi: 10.1007/s00445-013-0749-7
 
Karátson D, Biró T, Portnyagin M, Kiss B, Paquette J-L, Cseri Z, Hencz M, Németh K, Lahitte P, Márton E, Kordos L, Józsa S, Hably L, Müller S & Szarvas I (2022). Large-magnitude (VEI ≥ 7) ‘wet’ explosive silicic eruption preserved a Lower Miocene habitat at the Ipolytarnóc Fossil Site, North Hungary. Scientific Reports. 12: 9743. Doi: 10.1038/s41598-022-13586-3.
Karátson D, Telbisz T, Dibacto S, Lahitte P, Szakács A, Veres D, Gertisser R, Jánosi C & Timár G (2019). Eruptive history of the Late Quaternary Ciomadul (Csomád) volcano, East Carpathians, part II: magma output rates. Bulletin of Volcanology. 81: 28. Doi: 10.1007/s00445-019-1287-8
Karátson D, Oláh I, Pécskay Z, Márton E, Harangi S, Dulai A, Zelenka T & Kósik S (2007). Miocene volcanism in the Visegrád Mountains, Hungary: an integrated approach to regional stratigraphy. Geologica Carpathica. 58: 541-563.
Karátson D, Csontos L, Harangi S, Székely B & Kovácsvölgyi S (2001). Volcanic successions and the role of destructional events in the Western Mátra Mountains, Hungary: implications for the volcanic structures. Géomorphologie: relief, processus, environnement. 2: 79-92. Doi: 10.3406/morfo.2001.1092
Karátson D, Márton E, Harangi S, Józsa S, Balogh K, Pécskay Z, Kovácsvölgyi S, Szakmány G & Dulai A (2000). Volcanic evolution and stratigraphy of the Miocene Börzsöny Mountains, Hungary: an integrated study. Geologica Carpathica. 51: 325-343.
Kempton PD, Downes H & Embey-Isztin A (1997). Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin: Insights into the Lower Crust of a Collapsed Orogen. Journal of Petrology. 38: 941-970. Doi: 10.1093/petroj/38.7.941
Kereszturi G, Németh K, Csillag G, Balogh K & Kovács J (2011). The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. Journal of Volcanology and Geothermal Research. 201: 227-240. https://doi.org/10.1016/j.jvolgeores.2010.08.018
 
Kereszturi G, Csillag G, Németh K, Sebe K, Balogh K & Jáger V (2010). Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Central European Journal of Geosciences. 2: 362-384. Doi: 10.2478/v10085-010-0019-2
Korbély B (2014). Diverse volcanic features as dominant landscape elements and pillars of geotourism in the Bakony–Balaton Geopark, Hungary. Workshop Geoparks in volcanic regions sustainable development strategies. Abstracts Book. (pp. 35-38).
Koroknai B, Békési E, Bondár I, Czecze B, Győri E, Kovács G, Porkoláb K, Tóth, T, Wesztergom V, Wéber Z, Wórum G. (2023). Seismotectonic map of Hungary. Geomega Ltd., Budapest. http://www.geomega.hu/letoltes/
Kovács I, Patkó L, Liptai N, Lange TP, Taracsák Z, Cloetingh SAPL, Török K, Király E, Karátson D, Biró T, Kiss J, Pálos Z, Aradi LE, Falus G, Hidas K, Berkesi M, Koptev A, Novák A, Wesztergom V, Fancsik T & Szabó C (2020). The role of water and compression in the genesis of alkaline basalts: Inferences from the Carpathian-Pannonian region. Lithos. 354-355: 105323. https://doi.org/10.1016/j.lithos.2019.105323
Lexa J, Seghedi I, Németh K, Szakács A, Koneĉny V, Pécskay Z, Fülöp A & Kovacs M (2010). Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review. Open Geosciences. 2: 207-270. doi:10.2478/v10085-010-0024-5
Lexa J & Konečny V (1974). The Carpathian Volcanic Arc: a discussion. Acta Geol. Acad. Sci. Hung. 18: 279-294. .
Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J & Sandri L (2010). Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise ‘Ruaumoko’. Bulletin of Volcanology. 72: 185-204. doi: 10.1007/s00445-009-0311-9
Lukács R, Guillong M, Bachmann O, Fodor L & Harangi S (2021). Tephrostratigraphy and Magma Evolution Based on Combined Zircon Trace Element and U-Pb Age Data: Fingerprinting Miocene Silicic Pyroclastic Rocks in the Pannonian Basin. Frontiers in Earth Science. 9.  doi: 10.3389/feart.2021.615768
Lukács R, Harangi S, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I & Zimmerer M (2018). Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth-Science Reviews. 179: 1-19. https://doi.org/10.1016/j.earscirev.2018.02.005.             
Lukács R, Harangi S, Bachmann O, Guillong M, Danišík M, Buret Y, von Quadt A, Dunkl I, Fodor L, Sliwinski J, Soós I & Szepesi J (2015). Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contributions to Mineralogy and Petrology. 170: 52. https://doi.org/10.1007/s00410-015-1206-8
Martin U & Németh K (2007). Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. Journal of Volcanology and Geothermal Research. 159: 164-178. https://doi.org/10.1016/j.jvolgeores.2006.06.010
 
Martin U & Nemeth K (2004). Mio/Pliocene Phreatomagmatic Volcanism in the Western Pannonian Basin Geological Institute of Hungary, Budapest.
Molnár K, Lukács R, Dunkl I, Schmitt AK, Kiss B, Seghedi I, Szepesi J & Harangi S (2019). Episodes of dormancy and eruption of the Late Pleistocene Ciomadul volcanic complex (Eastern Carpathians, Romania) constrained by zircon geochronology. Journal of Volcanology and Geothermal Research. 373: 133-147. https://doi.org/10.1016/j.jvolgeores.2019.01.025
Moore JG (1967). Base surge in recent volcanic eruptions. Bulletin Volcanologique. 30: 337-363. doi: 10.1007/BF02597678
Németh K (2022). Volcanic geoheritage in the light of volcano geology. In Dóniz-Páez J. & Pérez N. M. (eds), El Hierro Island Global Geopark: Diversity of Volcanic Heritage for Geotourism. (pp. 1-24). Springer. https://doi.org/10.1007/978-3-031-07289-5_1
Németh K, Harangi Sz, Csillag G &  Karátson D (2020). A Balaton-felvidék alkálibazalt-vulkanizmusa. In Babinszk E & Horváth F (eds), A Balaton kutatása Lóczy Lajos nyomdokán. (pp. 127-150). Magyar Földtani Társulat Budapest.
Németh K & Kereszturi G (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences. 104: 2131-2146. doi: 10.1007/s00531-015-1243-6
 
Németh K (2010). Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In Cañón-Tapia E. & Szakács A. (eds), What Is a Volcano? . (pp. 43-66). Special Paper of the Geological Society of America. doi: 10.1130/2010.2470(04)
Németh K, Cronin S, Haller M, Brenna M & Csillag G (2010). Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article. Open Geosciences. 2: 339-361. doi:10.2478/v10085-010-0013-8
Németh K (2011). An Overview of the Monogenetic Volcanic Fields of the Western Pannonian Basin: Their Field Characteristics and Outlook for Future Research from a Global Perspective. In Stoppa F. (eds), Updates in Volcanology – A Comprehensive Approach to Volcanological Problems. (pp. 27-52). InTech, Rijeka, Croatia.
Németh K & Martin U (1999a). Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony-Balaton Highland Volcanic Field, Hungary. Acta Vulcanologica. 11: 271-282.
Németh K & Martin U (1999b). Small-volume volcaniclastic flow deposits related to phreatomagmatic explosive eruptive centres near Szentbékkálla, Bakony-Balaton Highland Volcanic Field, Hungary: Pyroclastic flow or hydroclastic flow. Földtani Közlöny. 129: 393-417.
 
Niu Y, Song S, Zhang L, Cook NJ, Martin U, Nemeth K, Huang J, Ma H, Gonevchuk GA, Seltmann R, Somoza L, Vazquez JT, Ferraris G. (2005). Conference Reports. Episodes. 28: 209-219. https://doi.org/10.18814/epiiugs/2005/v28i3/010
Ntaflos T, Bizimis M & Abart R (2017). Mantle xenoliths from Szentbékálla, Balaton: Geochemical and petrological constraints on the evolution of the lithospheric mantle underneath Pannonian Basin, Hungary. Lithos. 276: 30-44. https://doi.org/10.1016/j.lithos.2016.12.018
Nunes JC (2022). Geoparks in Volcanic Areas (pp. 1–49) Europe Nova Gráfica Lda
Pál M & Albert G (2023). From geodiversity assessment to geosite analysis – a GIS-aided workflow from the Bakony-Balaton UNESCO Global Geopark, Hungary. Geological Society, London, Special Publications. 530: SP530-2022-126. doi:10.1144/SP530-2022-126
Parfitt EA & Wilson L (1995). Explosive volcanic eruptions—IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophysical Journal International. 121: 226-232. Doi: 10.1111/j.1365-246X.1995.tb03523.x
Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečny V, Zelenka T, Kovacs M, Póka T, Fulop A, Márton E, Panaiotu C & Cvetkovic V (2006). Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica. 57: 511-530.
Rocholl A, Schaltegger U, Gilg HA, Wijbrans J & Böhme M (2018). The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. International Journal of Earth Sciences. 107: 387-407. Doi: 10.1007/s00531-017-1499-0
Searle EJ (1964). City of Volcanoes: A Geology of Auckland Paul's Book Arcade, Auckland 1–112.
Seghedi I, Mirea V, Popa R-G & Szakács A (2019). Tectono-magmatic characteristics of post-collisional magmatism: Case study East Carpathians, Călimani-Gurghiu-Harghita volcanic range. Physics of the Earth and Planetary Interiors. 293: 106270. https://doi.org/10.1016/j.pepi.2019.106270
Seghedi I & Downes H (2011). Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Research. 20: 655-672. https://doi.org/10.1016/j.gr.2011.06.009
Seghedi I, Downes H, Harangi S, Mason PRD & Pécskay Z (2005). Geochemical response of magmas to Neogene–Quaternary continental collision in the Carpathian–Pannonian region: A review. Tectonophysics. 410: 485-499. https://doi.org/10.1016/j.tecto.2004.09.015
Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Roşu E, Pécskay Z, Márton E & Panaiotu C (2004a). Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos. 72: 117-146. https://doi.org/10.1016/j.lithos.2003.08.006
Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K & Pécskay Z (2004b). Post-collisional Tertiary–Quaternary mafic alkalic magmatism in the Carpathian–Pannonian region: a review. Tectonophysics. 393: 43-62. https://doi.org/10.1016/j.tecto.2004.07.051
Sheridan MF & Wohletz KH (1983). Hydrovolcanism: basic considerations. Journal of Volcanology and Geothermal Research 17: 1-29. https://doi.org/10.1016/0377-0273(83)90060-4
Šimon L & Halouzka R (1996). Pútikov vrsok volcano - the youngest volcano in the Western Carpathians. Slovak Geological Magazine. 2: 103-123.
Šimon L & Maglay J (2005). Dating of sediments underlying the Putikov vŕšok volcano lava flow by the OSL method. Mineralia Slovaca. 37: 279-281.
Smith IEM & Németh K (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society, London, Special Publications. 446: 1-28. doi:10.1144/SP446.14
Szabó C, Falus G, Zajacz Z, Kovács I & Bali E (2004). Composition and evolution of lithosphere beneath the Carpathian–Pannonian Region: a review. Tectonophysics. 393: 119-137. https://doi.org/10.1016/j.tecto.2004.07.031
Szabó G & Závodi B. (2018). The tourism geographical characteristics of wine gastronomy festivals in the Balaton Wine Region. Pannon Management Review. 7: 27-43.
Szakács A & Seghedi I (2000). Large volume volcanic debris avalanche in the East Carpathians, Romania. In Leyrit H. & Montenat C. (eds), Volcaniclastic rocks, from magmas to sediments. (pp. 131-151). Gordon and Breach Science Publishers, Amsterdam.
Toramaru A & Matsumoto T (2004). Columnar joint morphology and cooling rate: A starch-water mixture experiment. Journal of Geophysical Research: Solid Earth. 109. https://doi.org/10.1029/2003JB002686
Török K, Németh B, Koller F, Dégi J, Badenszki E, Szabó C & Mogessie A (2014). Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study. Mineralogy and Petrology. 108: 33-47. Doi: 10.1007/s00710-013-0287-1
Török K, Dégi J, Szép A & Marosi G (2005). Reduced carbonic fluids in mafic granulite xenoliths from the Bakony–Balaton Highland Volcanic Field, W-Hungary. Chemical Geology. 223: 93-108. https://doi.org/10.1016/j.chemgeo.2005.05.010
Valentine GA & Connor CB (2015). Chapter 23 - Basaltic Volcanic Fields. In Sigurdsson H. (eds), The Encyclopedia of Volcanoes (Second Edition). (pp. 423-439). Academic Press. , Amsterdam. https://doi.org/10.1016/B978-0-12-385938-9.00023-7
Valentine GA & Gregg TKP (2008). Continental basaltic volcanoes — Processes and problems. Journal of Volcanology and Geothermal Research. 177: 857-873. https://doi.org/10.1016/j.jvolgeores.2008.01.050
 
Varga P, Győri E & Timár G (2021). The most devastating earthquake in the Pannonian Basin: 28 June 1763 Komárom. Seismological Research Letters 92: 1168–1180. doi: https://doi.org/10.1785/0220200411
Waters AC & Fisher RV (1971). Base surges and their deposits: Capelinhos and Taal Volcanoes. Journal of Geophysical Research (1896-1977). 76: 5596-5614. https://doi.org/10.1029/JB076i023p05596
Wijbrans J, Németh K, Martin U & Balogh K (2007). 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. Journal of Volcanology and Geothermal Research. 164: 193-204. https://doi.org/10.1016/j.jvolgeores.2007.05.009
Wohletz KH & Sheridan MF (1983). Hydrovolcanic explosions; II, Evolution of basaltic tuff rings and tuff cones. American Journal of Science. 283: 385-413. Doi: 10.2475/ajs.283.5.385