skip to main content
Menu
Original Article

Cave Geomechanical Index (CGI). Classification and Contribution to the Conservation of Natural Caves in the Iron Mines

Authors

Abstract

Cave geotechnical studies have been the key to meeting the requirements of Brazilian environmental legislation for the conservation of speleological heritage in mining areas. This paper presents a methodology that classifies iron caves according to their susceptibility to structural instability called the Cave Geomechanical Index (CGI). This index combines four variables: (1) Rock Mass Rating (RMR), Bieniawski’ s geomechanical variable, which classifies the quality of the rock mass hosting the cave; (2) Hydraulic Radius (HR), an engineering variable that allows the dimension of the span to be evaluated; (3) Ceiling Shape (CS), a speleological variable that indicates whether the ceiling geometry of the cave spans is favorable or unfavorable for block formation, and (4) Ceiling Thickness (CT), a geotechnical variable that represents the depth between the ceiling of the cave and the surface of the ground regarding auto-support issues. The CGI was developed, applied and calibrated over four years, by monitoring 63 spans from 27 caves adjacent to active iron ore mines in Carajás, Pará state, Brazil, that had been authorized to be eliminated. This geomechanical classification system proved to be easy to implement and its results showed that 76% of the spans with breakdown occurrences in the caves were classified as high or very high susceptibility to structural instability, while 94% of the spans classified as low susceptibility did not show any signs of physical damage. The CGI is discussed with the focus on improving stability studies, predictability of cave breakdown mechanisms and geotechnical risk analysis of iron caves near mining operations.

Read the full text of the article

Keywords

References

- Andriani G.F, Parise M (2017). Applying rock mass classifications to carbonate rocks for engineering purposes with a new approach using the rock engineering system. Journal of Rock Mechanics and Geotechnical Engineering. 9(2): 364–369.
 - Araújo R, Sebastião C.S, Ferreira M.L, Galdeano M, Soares L, Brandi I.V, Gomes R.C (2016). Levantamento de dados geomecânicos em cavidades em formação ferrífera utilizando laser scanner 3D. Anais do VII Simpósio Brasileiro de Mecânica das Rochas. Anais. Brasil.
 - Barbosa M. R (2018). Geofísica Espeleológica - Metodologia para Aplicação de Eletrorresistividade na Investigação de Instabilidade Litoestrutural de Teto em Cavidades Ferríferas. Cavidade N4E-0026, Mina N4EN, Carajás, PA. Post-Doctoral Thesis. Federal University of Rio De Janeiro .
 - Barbosa M. R, Silva A. D. F, De Paula R. G, Dutra G. G, Barata A, Brandi I. V, Silva C.R.P, Osborne R.A (2019). Breakdown mechanisms in iron caves. An example from Brazil. International Journal of Speleology. 48 (2): 179-190.
 - Barton N.R, Lien R, Lunde J (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics. 6(4): 189-239.
 - Bieniawski  Z. T (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil and petroleum engineering. John Wiley & Sons: New York, USA.
 - Brandi I, Barbosa M, Guimaraes R (2015a). Uso do esclerômetro de Schmidt na avaliação da resistência geomecânica de cavernas naturais subterrâneas em terrenos ferríferos, Carajás- PA. 33rd Brazilian Congress of Speleology, (pp. 627-634). Eldorado.
 - Brandi I. V, Barbosa M. R, Calux A. S, Araujo R. N (2015b). Geotecnia aplicada à previsibilidade em Cavernas Naturais Subterrâneas Situadas na Área Afetada por Lavra, Carajás - PA.  33rd Brazilian Congress of Speleology (pp. 533-541).  Eldorado.
 - Brandi, I. V, Barbosa, M. R, de Paula R.G, Araujo R.N, Rafael S.V.M, Lima H.M (2019a). Instrumented geotechnical monitoring of a natural cave in a near mine operation – Towards a sustainable approach to mining and preservation of speleological heritage. Journal of Cleaner Production. 239: 118040.
 - Brandi I, Sebastião, C.S, Ferrreira M.L, Lima H.M, Da Gama. M.F.P (2019b). Physical stability of iron ore caves: geomechanical studies of a shallow underground cave in SE Brazil. REM - International Engineering Journal. 72(2): 217-225  http://dx.doi.org/10.1590/0370-44672018720053
 - Buchmann F. S, Caron F, Lopes R. P (2009). Traços fósseis (paleotocas e crotovinas) da megafauna extinta no Rio grande do Sul, Brasil. Revista Brasileira de Paleontologia, 12(3): 247-256.
 - Calux A. S (2013). Gênese e desenvolvimento de cavidades naturais subterrâneas em formação ferrífera no Quadrilátero Ferrífero, Minas Gerais. Dissertação. Universidade Federal de Minas Gerais.Brasil.
 - Carter T. G, Miller R.I (1995). Crown Pillar Risk Assessment – Cost Effective Measures for Mine Closure Remediation Planning. Transactions of the Institution of Mining and Metalugy. 104: 41-57.
 - Carter T. A (2014). Guidelines for use of the scaled span method for surface crown pillar stability assessment. Toronto: Golder Associates.
 - Dardenne M. A, Schobbenhauss C (2001). Metalogênese do Brasil. Editora Universidade Nacional de Brasília UNB, 392p.
 - De Paula A. Q, Pires M. A, Correa T. R, Brandi I. V, Lima H. M (2018). Natural caves empirical stability assessments application of Laubscher’s diagram and Barton’s support graph.Brazilian Symposium on Rock Mechanics. Salvador.
 - Diederichs M. S, Kaiser P. K (1999). Tensile strength and abutment relaxation as failure control mechanisms in underground excavations. International Journal of Rock Mechanics and Mining Sciences. 36(1): 69–96.
 - Dutra G. M (2013). Síntese dos processos de gênese de cavernas em litologias de ferro.  Brazilian Congress of Speleology, 32 (pp. 415-426). Barreiras.
 - Dutra G. M (2017). Análise de suscetibilidade de duas cavernas em litologia de ferro na Serra do Gandarela: Estudo de caso AP_0009 e AP_0038. 2017. Thesis. Ouro Preto: Federal University of Ouro Preto.
 - Edelbro C, Sjoberg J, Nordlund E. A (2006). Quantitative comparison of strength criteria for hard rock masses. Tunnelling and Underground Space Technology. 22: 57-68.
 - Fiore A, Fazio N.L, Lollino P, Luisi M, Miccoli M.N, Pagliarulo R, Perroti M, Pisano L, Spalluto L, Carmela V, Vessia G, Parise M (2018). Evaluating the susceptibility to anthropogenic sinkholes in Apulian calcarenites, southern Italy. In Parise M, Gabrovsek F, Kaufmann G, Ravbar N,  Advances in Karst Research: Theory, Fieldwork and Applications (Special Publications) ( v. 466, pp. 381-396.). London: Geological Society.
 - Gutiérrez F, Parise M, De Waele J, Jourde H. A (2014). Review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews 138: 61-88.
 - Hatzor Y. H, Wainshtein I, Mazor D. B (2010). Stability of shallow karstic caverns in blocky rock masses. International Journal of Rock Mechanics & Mining Sciences, 47(8): 1289-1303
 - Hutchinson D. J, Diederichs M. S (1996). Cablebolting in Underground Mines. Richmond: BiTech Publishers Ltd.
 - Jordá-Bordehore L, Martín-Garcia R, Jordá-Bordehore R, Romero-Crespo P.L (2016). Stability assessment of shallow limestone caves through an empirical approach: application of the stability graph method to the Castañar Cave study site (Spain). Bulletin of Engineering Geology and the Environment.75: 1469–1483.
 - Jordá-Bordehore L (2017). Stability assessment of natural caves using empirical approaches and rock mass classifications. Rock Mechanics and Rock Engineering. 50(8): 2143-2154.
 - Justo A. P, Lopes E. S (2014). Serra dos Carajás. Folha SB.22-Z-A-II.  http://rigeo.cprm.gov.br/xmlui/handle/doc/8448?show=full. Retrieved: April 20, 2020.
 - Lacerda S. G (2017). Caracterização geomecânica do maciço rochoso da Gruta dos Viajantes, Parque Estadual do Ibitipoca, sudeste de Minas Gerais. Brazilian Congress of Speleology, 34 (pp. 261-275.)Ouro Preto: Brazilian Society of Speleology.
 - Laubscher D. H. A (1990). Geomechanics classification system for the rating of rock mass in mine design. Journal of the South African Institute of Mining and Metallurgy. 90(10): 257-273.
 - MMA - Ministério do Meio Ambiente (2004) – Resolução CONAMA n° 347, de 10 de setembro. www.icmbio.gov.br/cecav/images/download/Portaria 887.doc. Retrived: April 20, 2020.
 - Milne D. M (1997). Underground design and deformation based on surface geometry. Thesis. University of British Columbia, Vancouver.
 - Morris R.C (1985). Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes—a conceptual model, In Wolf K.H. ed., Handbook of strata-bound and stratiform ore deposits (vol.13, pp.73–235). Amsterdam: Elsevier.
 - Moss R.P (1965). Slope development and soil morphology in a part of SW Nigeria. European Journal of Soil Science . 16:192-209.
 - North L.A, van Beynen P.E, Parise M (2009). Interregional comparison of karst disturbance: west-central Florida and southeast Italy. Journal of Environmental Management . 9(5): 1770–1781.
 - Novas N, Gazquez J.A, MacLennan J, Garcia R.M, Fernandez-Ros M, Manzano-Agugliaro (2017).  A real-time underground environment monitoring system for sustainable tourism of caves. Journal of Cleaner Production. 142: 2707–2721.
 - Parise M, Trisciuzzi M. A (2007). Geomechanical characterization of carbonate rock masses in underground karst systems: a case study from Castellana- Grotte (Italy). In Tyc A and  Stefaniak K (eds) Karst and Cryokarst (vol. 45, pp. 227–236). Studies of the Faculty of EarthSciences, University of Silesia. Silesia, Poland.
 - Parise M, Lollino P. A (2011). Preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology. 134(1-2):132-143.
 - Parise M, Closson D, Gutiérrez F, Stevanovic Z (2015).  Anticipating and managing engineering problems in the complex karst environment. Environmental Earth Sciences. 74:7823–7835.
 - Peck W. A, Sainsbury D. P, Lee, M. F (2013). The importance of geology and ceiling shape on the stability of shallow caverns. Australian Geomechanics Journal. 48(3):1-14.
 - Piló L. B, Auler A (2009). Geoespeleologia das cavidades em rochas ferríferas da região de Carajás, PA. Congresso Brasileiro de Espeleologia, 30. Montes Claros.
 - Piló L.B, Auler A, Martins F (2015). Carajás National Forest: Iron ore plateaus and caves in southeastern Amazon. Landscapes and Landforms of Brazil. Springer: Dordrecht.
 - Pinheiro R. V. L, Maurity C. W (1988). As cavernas em rochas intempéricas da Serra dos Carajás (PA). Anais 1o Congresso de Espeleologia da América Latina e do Caribe.Brasil.
 - Renó T. S. N (2016). Proposta de zoneamento geotécnico de cavidades naturais em formações ferríferas. 2016. 203 f. Thesis. Universidade Federal de Ouro Preto, Brasil.
 - Santos Junior, E. J (2017). Modelagem estocástica aplicada na estimativa do raio de proteção de cavidades naturais subterrâneas. Dissertação.Universidade Federal de Ouro Preto, Brasil.
 - Sánchez M. A (2007). Geological risk assessment of the area surrounding Highmira Cave: A proposed Natural Risk Index and Safety Factor for protection of prehistoric caves. Engineering Geology. 94: 180-200.
 - Siegel T. C, McCrackin D. W (2001). Geotechnical characterization and modeling of a shallow karst bedrock site. 8th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Louisville KY.
 - Simmons G. C (1963). Canga Caves in the Quadrilátero Ferrífero, Minas Gerais, Brazil. O Carste. Bulletin of the National Speleological Society. 17(3):74-77.
 - Szunyogh G (2010). Stability assessment of caves and its results. Óbuda University e-Bulletin. 1(1).
 - Terzaghi K (1949). Rock Defects and loads on Tunnel Supports. Massachusetts: Harvard University.
- Valentim R. F (2016). Classificação geomecânica da Caverna Natural subterrânea BRU_0005, município de São Gonçalo do Rio Abaixo, MG. 2016. Thesis. Federal University of Ouro Preto.
 - Valentim R. F, Olivito J.P.R (2011). Unidade Espeleológica Carajás: Delimitação dos Enfoques Regional e Local, conforme Metodologia da IN-02/2009 MMA. Espeleo-Tema Revista Brasileira Dedicada ao Estudo de Cavernas e Carste - SBE , 22, 1:41-60. Campinas, SP.
 - Van Beynen P.E, Townsend K.M (2005). A disturbance index for karst environments.
Environmental Management. 36 (1): 101–116.
 - Van Beynen P.E, Brinkmann R, van Beynen, K (2012). A sustainability index for karst environments. Journal of Cave Karst Studies. 74 (2): 221–234.
 - Vann J. H (1963). Developmental processes in laterite terrains in Amapá. Geographical Review. 53(3):406-417.
 - Waltham T (2002). The engineering classification of karst with respect to the role and influence of caves. International Journal of Speleology.31:19-35
 - White E.L, White W.B (1969). Processes of cavern breakdown. National Speleological Society Bulletin. 31: 83-96.
 - White E.L (2012). Breakdown. In: White W.B. & Culver D.C. (Eds.), Encyclopedia of caves (2nd Ed. pp. 68-74). Elsevier: Amsterdam. https://doi.org/10.1016/B978-0-12-383832-2.00010-4
 - Yardimci A.G, Tutluoglu L, Karpuz, C (2016). Crown pillar optimization for surface to underground mine transition in Erzincan/Bizmisen iron mine. [Proceedings of] the 50th U.S. Rock Mechanics/Geomechanics Symposium. ARMA.