skip to main content
Menu
Original Article

Automotic Recognition of Sleep Spindles Based on Two-Stage Classifier with Artificial Neural Networks and Support Vector Machines

Authors

Abstract

Sleep spindles are one of the most important transient waveforms found in the sleep EEG signal. Here, we introduce a two-stage procedure based on artificial neural networks for the automatic recognition of sleep spindles (SS) in a 19-channel electroencephalographic signal. In the first stage, a pre-processing perception is used for enhancing overall detection and also reducing computation time. In the second stage, the selected Sleep spindles (SS), classified with neural network post-classifier. Classifying tools in post-processing procedure were MLP and RBSVM that their operations are compared in the last section of the report. Visual inspection of 19-channel EEG from six subjects by one expert in this theme, showed that RBSVM operation is better than MLP with BP (Back propagation) training, that SVM provided 91.4%  average sensitivity and 3.85% average false detection rate.

Keywords