skip to main content
Menu
Original Article

Raman spectroscopy study of the secondary actinolite in gabbrodiorite intrusive rocks from Varan area, Urumieh-Dokhtar Magmatic Arc, Iran

Authors

Abstract

Mineralogical studies play a key role in deciphering mineral’s formation and associated geochemical processes in geosciences. This paper presents the application of Raman spectroscopy to the characterization of actinolite in rock samples. The studied actinolite was formed as the pseudomorph of primary pyroxene in gabbrodiorite intrusive rock sample collected from Varan area, Urumieh-Dokhtar Magmatic Arc of Iran. The Raman spectra of micrometer-sized actinolite grains embedded in a crude rock sample are compared with the corresponding literature data for actinolite and tremolite in range of 200-1200 cm-1 and 3600-3700 cm-1 region. The results show that the quantitative estimation of Mg# = Mg/(Mg+Fe2+) can be obtained from the fractional intensities of the OH-stretching bands by applying Raman spectroscopy to micrometer-sized actinolite grains in a crude rough rock sample, which is in good agreement with the results from EMPA. The Raman spectroscopy is a fast method and low-cost for quantitative estimation of Mg# in actinolite.

Keywords

References

 

    1. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229: 211–238.

 

    1. Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 80: 549-559.

 

    1. Andò S, Garzanti E (2014) Raman spectroscopy in heavy-mineral studies. Geological Society, London, Special volume no. 386: 395-412.

 

    1. Andrut M, Gottschalk M, Melzer S, Najorka J (2000) Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite-richterite solid solutions. Physics and Chemistry of Minerals 27: 301-309.

 

    1. Apopei AI, Buzgar N (2010) The Raman study of amphiboles. Analele Stiintifice de Universitatii AI Cuza din Iasi, Geologie 56: 57–83.

 

    1. Apopei AI, Buzgar N, Buzatu A (2011) Raman and infrared spectroscopy of kaersutite and certain common amphiboles. Analele Stiintifice de Universitatii AI Cuza din Iasi, Geologie 57: 35-58.

 

    1. Apopei AI, Buzgar N, Damian G, Buzatu A (2014) The Raman study of weathering minerals from the Coranda-Hondol open pit (Certej gold-silver deposit) and their photochemical degradation products under laser irradiation. The Canadian Mineralogist 52: 1027-1038.

 

    1. Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy. Journal of Raman spectroscopy 28: 803-809.

 

    1. Belluso E, Fornero E, Cairo S, Albertazzi G, Rinaudo C (2007) The application of micro-Raman spectroscopy to distinguish carlosturanite from serpentine-group minerals. The Canadian Mineralogist 45: 1495-1500.

 

    1. Bersani D, Aliatis I, Tribaudino M, Mantovani L, Benisek A, Carpenter MA, Gatta GD, Lottici PP (2018) Plagioclase composition by Raman spectroscopy. Journal of Raman Spectroscopy 49: 684-698.

 

    1. Bersani D, Andò S, Scrocco L, Gentile P, Salvioli-Mariani E, Fornasini L, Lottici PP (2019) Composition of Amphiboles in the Tremolite–Ferro–Actinolite Series by Raman Spectroscopy. Minerals 9: 491.

 

    1. Burns RG, Greaves C (1971) Correlations of infrared and Mossbauer site population measurements of actinolites. American Mineralogist 56: 2010-2033.

 

    1. Burns RG, Strens RG (1966) Infrared study of the hydroxyl bands in clinoamphiboles. Science 153: 890-892.

 

    1. Buzatu A, Buzgar N (2010) The Raman study of single-chain silicates. Analele Stiintifice de Universitatii AI Cuza din Iasi, Geologie 56: 107-126.

 

    1. Buzgar N, Apopei AI, Diaconu V, Buzatu A (2013) The composition and source of the raw material of two stone axes of Late Bronze Age from Neamt County (Romania)-A Raman study. Analele Stiintifice de Universitatii AI Cuza din Iasi, Geologie 59: 5-22.

 

    1. Castro A, Stephens WE (1992) Amphibole-rich polycrystalline clots in calc-alkaline granitic rocks and their enclaves. The Canadian Mineralogist 30: 1093-1112.

 

    1. Chen TH, Calligaro T, Pagès-Camagna S, Menu M (2004) Investigation of Chinese archaic jade by PIXE and μRaman spectrometry. Journal of Applied Physics A 79: 177-180.

 

    1. Della Ventura G, Robert JL, Beny JM (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti-rich potassic richterite: Evidence from XRD, FTIR, and Raman studies. American Mineralogist 76: 1134-1140.

 

    1. Della Ventura G, Robert JL, Beny JM, Raudsepp M, Hawthorne FC (1993) The OH-F substitution in Ti-rich potassium richterite: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K2O-Na2O-CaO-MgO-SiO2-TiO2-H2O-HF. American Mineralogist 78: 980-987.

 

    1. Ernst WG, Wai CM (1970) Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. American Mineralogist 55: 1226-1258.

 

    1. Fornero E, Allegrina M, Rinaudo C, Mazziotti-Tagliani S, Gianfagna A (2008) Micro-Raman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Periodico di Mineralogia 77: 5-14.

 

    1. Ghalamghash J, Babakhani AR (1996) Geological Map of Kahak: Geological Survey of Iran, Scale 1:100000 Sheet.

 

    1. Gopal NO, Narasimhulu KV, Rao JL (2004) EPR, optical, infrared and Raman spectral studies of Actinolite mineral. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60: 2441-2448.

 

    1. Hawthorne FC, Oberti R (2007) Amphiboles: Crystal chemistry. In Hawthorne FC, Oberti R, Della Ventura G, Mottana A (2007) Amphiboles: Crystal Chemistry, Occurrence, and Health Issues. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America.

 

    1. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. American Mineralogist 97: 2031-2048.

 

    1. Huang E (2003) Raman Spectroscopic Study of Amphiboles. National Cheng Kung University (PhD thesis in Chinese).

 

    1. Huraiova M, Lengauer C, Abart R, Hurai V (2018) Compositional, structural and vibrational spectroscopic characteristics of feldspar megacrysts in alkali basalts from southern Slovakia. Journal of Geosciences 63: 215-226.

 

    1. Iezzi, G, Ventura GD, Bellatreccia F, Mastro SL, Bandli BR, Gunter ME (2007) Site occupancy in richterite-winchite from Libby, Montana, USA, by FTIR spectroscopy. Mineralogical Magazine 71: 93-104. 

 

    1. Ivanov VG, Dyulgerov M, Oberti R (2019) Polarized Raman spectroscopy and lattice dynamics of potassic-magnesio-arfvedsonite. Physics and Chemistry of Minerals 46: 181-191.

 

    1. Jovanovski G, Makreski P, Kaitner B, Boev B (2009) Silicate minerals from Macedonia. Complementary use of vibrational spectroscopy and X-ray powder diffraction for identification and detection purposes. Croatica Chemica Acta 82: 363-386.

 

    1. Kaindl R, Többens DM, Haefeker U (2011) Quantum-mechanical calculations of the Raman spectra of Mg-and Fe-cordierite. American Mineralogist 96: 1568-1574.

 

    1. Kloprogge JT, Case MH, Frost RL (2001a) Raman microscopic study of the Li amphibole holmquistite, from the Martin Marietta Quarry, Bessemer City, NC, USA. Mineralogical Magazine 65: 775-785.

 

    1. Kloprogge JT, Visser D, Ruan H, Frost RL (2001b) Infrared and Raman spectroscopy of holmquistite, Li2 (Mg, Fe2+)(Al, Fe3+)(Si, Al)8O22 (OH)2Journal of materials science letters 20: 1497-1499.

 

    1. Leake BE, Woolley AR, Birch WD, Burke EA Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NC (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s 1997 recommendations. The Canadian Mineralogist 41: 1355-1362.

 

    1. Leake BE, Woolley AR, Birch WD, Burke EA, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NC (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineralogical Magazine 68: 209-215.

 

    1. Leissner L (2014) Crystal chemistry of amphiboles studied by Raman spectroscopy. Master thesis in Geoscience, University of Hamburg, Germany.

 

    1. Leissner L, Schlüter J, Horn I, Mihailova B (2015) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. American Mineralogist 100: 2682-2694.

 

    1. Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences 62: 1-11.

 

    1. Majumdar AS, Mathew G (2015) Raman-infrared (IR) spectroscopy study of natural cordierites from Kalahandi, Odisha. Journal of the Geological Society of India 86: 80-92.

 

    1. Makreski P, Jovanovski G (2009) Minerals from Macedonia: XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73: 460-467.

 

    1. Makreski P, Jovanovski G, Dimitrovska S (2005b) Minerals from Macedonia: XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy. Vibrational Spectroscopy 39: 229-239.

 

    1. Makreski P, Jovanovski G, Gajović A (2006) Minerals from Macedonia: XVII. Vibrational spectra of some common appearing amphiboles. Vibrational Spectroscopy 40: 98-109.

 

    1. Makreski P, Jovanovski G, Stojančeska S (2005a) Minerals from Macedonia XIII: Vibrational spectra of some commonly appearing nesosilicate minerals. Journal of molecular structure 744: 79-92.

 

    1. Mikouchi T, Miyamoto M (2000) Micro Raman spectroscopy of amphiboles and pyroxenes in the martian meteorites Zagami and Lewis Cliff 88516. Meteoritics & Planetary Science 35: 155-159.

 

    1. Otten MT (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contributions to Mineralogy and Petrology 86: 189-199.

 

    1. Petry R, Mastalerz R, Zahn S, Mayerhöfer TG, Völksch G, Viereck Götte L, Kreher Hartmann B, Holz L, Lankers M, Popp J (2006) Asbestos Mineral Analysis by UV Raman and Energy‐Dispersive X‐ray Spectroscopy. Chemphyschem: a European journal of chemical physics and physical chemistry 7: 414-420.

 

    1. Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineralogical Magazine 68: 455-465.

 

    1. Rinaudo C, Cairo S, Gastaldi D, Gianfagna A, Tagliani SM, Tosi G, Conti C (2006) Characterization of fluoro-edenite by μ-Raman and μ-FTIR spectroscopy. Mineralogical Magazine 70: 291-298.

 

    1. Sbroscia M, Ventura GD, Iezzi G, Sodo A (2018) Quantifying the A-site occupancy in amphiboles: a Raman study in the OH-stretching region. European Journal of Mineralogy 30: 429-436.

 

    1. Shurvell HF, Rintoul L, Fredericks PM (2001) Infrared and Raman spectra of jade and jade minerals. The Internet Journal of Vibrational Spectroscopy 5, 4.

 

    1. Šontevska V, Jovanovski G, Makreski P, Raškovska A, Šoptrajanova B (2008) Minerals from Macedonia. XXI. Vibrational Spectroscopy as Identificational Tool for Some Phyllosilicate Minerals. Acta Chimica Slovenica 55: 757-766.

 

    1. Su W, Zhang M, Redfern SA, Gao J, Klemd R (2009). OH in zoned amphiboles of eclogite from the western Tianshan, NW-China. International Journal of Earth Sciences 98: 1299-1309.

 

    1. Susta U, Ventura GD, Hawthorne FC, Abdu YA, Day MC, Mihailova B, Oberti, R (2018) The crystal-chemistry of riebeckite, ideally Na2Fe32+ Fe23+ Si8O22 (OH) 2: a multi-technique study. Mineralogical Magazine 82: 837-852. 

 

    1. Waeselmann N, Schlüter J, Malcherek T, Della Ventura G, Oberti R, Mihailova B (2020) Nondestructive determination of the amphibole crystal‐chemical formulae by Raman spectroscopy: One step closer. Journal of Raman Spectroscopy.

 

    1. Wang A, Dhamelincourt P, Turrell G (1988a) Infrared and low-temperature micro-Raman spectra of the OH stretching vibrations in cummingtonite. Journal of Applied Spectroscopy 42: 1451-1457.

 

    1. Wang A, Dhamelincourt P, Turrell G (1988b) Raman and infrared spectroscopic investigation of the cation distributions in amphiboles. Journal of Molecular Structure 175: 183-188.

 

    1. Wang A, Dhamelincourt P, Turrell G (1988c) Raman microspectroscopic study of the cation distribution in amphiboles. Applied spectroscopy 42: 1441-1450.

 

    1. Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. American Mineralogist 86: 790-806.

 

    1. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. American mineralogist 95: 185-187.

 

    1. Wilkins RWT (1970) Iron-magnesium distribution in the tremolite-actinolite series. American Mineralogist 55: 1993-1998.

 

    1. Yang H, Konzett J, Prewitt CT, Fei Y (1999) Single-crystal structure refinement of synthetic M4K-substituted potassic richterite, K (KCa) Mg5Si8O22 (OH)2American Mineralogist 84: 681-684.

 

    1. Yazdi A, Ashja-Ardalan A, Emami MH, Dabiri R, Foudazi M (2019) Magmatic interactions as recorded in plagioclase phenocrysts of quaternary volcanics in SE Bam (SE Iran), Iranian Journal of Earth Sciences 11(3): 215-224.

 

  1. Yazdi A, ShahHoseini E, Razavi R (2016) AMS, A method for determining magma flow in Dykes (Case study: Andesite Dyke). Research Journal of Applied Sciences 11(3): 62-67.