Correction to: A note on linear non-Newtonian Volterra integral equations Nihan Güngör*, 10.1007/s40096-021-00441-1
Correction to: Numerical methods for solving Schröinger equations in complex reproducing kernel Hilbert spaces F. Z. Geng*, 10.1007/s40096-021-00449-7
On the fractional integral inclusions having exponential kernels for interval-valued convex functions Taichun Zhou, Zhengrong Yuan, Tingsong Du*, 10.1007/s40096-021-00445-x
A new method for solving linear programming problems using Z-numbers’ ranking Fatemeh Hasankhani, Behrouz Daneshian, Tofigh Allahviranloo*, Farzin Modarres Khiyabani, 10.1007/s40096-021-00446-w
Numerical solution of the diffusion problem of distributed order based on the Sinc-collocation method Sh. Taherkhani, I. Najafi Khalilsaraye*, B. Ghayebi, 10.1007/s40096-021-00447-9
Some computational convergent iterative algorithms to solve nonlinear problems Mohsen Rabbani*, Ji Huan He, Murat Düz, 10.1007/s40096-021-00448-8
A numerical method based on hybrid functions for solving a fractional model of HIV infection of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} T cells M. R. Doostdar, A. R. Vahidi*, T. Damercheli, E. Babolian, 10.1007/s40096-021-00450-0
A numerical method for nonlinear fractional reaction–advection–diffusion equation with piecewise fractional derivative M. H. Heydari*, A. Atangana, 10.1007/s40096-021-00451-z
Application of Pell collocation method for solving the general form of time-fractional Burgers equations M. Taghipour, H. Aminikhah*, 10.1007/s40096-021-00452-y
Structures of exact solutions for the modified nonlinear Schrödinger equation in the sense of conformable fractional derivative Yeşim Sağlam Özkan*, Esra Ünal Yılmaz, 10.1007/s40096-021-00453-x