10.57647/jrs-2026-1602.12

Evaluation of the effects of climate variability on vegetation in mountainous rangelands (case study: Sabalan Mountainside in Iran)

  1. Department of Environmental Science and Engineering, Ard.C., Islamic Azad University, Ardabil, Iran
  2. Department of Agricultural Science, Ard C., Islamic Azad University, Ardabil, Iran

Received: 2024-12-24

Revised: 2025-07-09

Accepted: 2025-07-24

Published in Issue 2025-10-27

How to Cite

Hashemian, F., Fataei, E., Mosayebi, M., & Imani, A. (2025). Evaluation of the effects of climate variability on vegetation in mountainous rangelands (case study: Sabalan Mountainside in Iran). Journal of Rangeland Science. https://doi.org/10.57647/jrs-2026-1602.12

PDF views: 12

Abstract

 The impact of climate change on vegetation growth has become a significant issue in recent years. This study focuses on the effects of climate variability on vegetation cover of rangelands in different elevation zones of the Sabalan Mountain region in northwestern Iran, which plays a vital role in the local economy and ecosystem. The study utilized a combination of climate and rangeland vegetation cover data Normalized Difference Vegetation Index (NDVI) collected over 17 years (2003–2019) from two local weather stations and Landsat satellite imagery. The Mann-Kendall test was used to identify trends, and simple and multiple linear regressions (p<0.05) models were employed to assess the relationship between climate variables and vegetation cover NDVI. The results showed that a significant rise in June average temperatures (0.071°C/year, p<0.05), while vegetation cover showed a notable increase in NDVI during early summer (0.004/year for low-elevation rangelands, 0.006/year for mid-altitude rangelands, p<0.05). A strong positive correlation (r=0.57 for mean and r=0.52 for peak temperature, p<0.01) was found between NDVI in higher-altitude rangelands and July temperatures. The NDVI of rangelands also showed a notable positive correlation of r=0.55 with the average June temperature (p<0.01). Additionally, the multiple regression analysis revealed that the relationship between NDVI and temperature parameters strengthened at mid-altitudes, with an increase in correlation (r=0.73) (p<0.01) when both average and maximum spring temperatures were considered. This research highlights the potential implications of climate change for rangeland management in the region, offering insights for future studies and climate adaptation strategies.

Keywords

  • Sabalan Mountains,
  • Climate change,
  • Temperature increase,
  • Satellite imagery,
  • Vegetation cover

References

  1. Almahasheer, H., Aljowair, A., Duarte, C.M., Irigoien, X., 2016. Decadal stability of Red Sea mangroves, Estuarine, Coastal and Shelf Science, 169, pp. 164-172. https://doi.org/10.1016/j.ecss.2015.11.027.
  2. Armitage, A.R., Highfield, W.E., Brody, S.D., Louchouarn, P., 2015. The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast, Plos ONE, 10(5): e0125404. https://doi.org/10.1371/journal.pone.0125404.
  3. Asbridge, E., Lucas, R., Ticehurst, C., Bunting, P., 2016. Mangrove response to environmental change in Australia’s Gulf of Carpentaria, Ecology and Evolution, 6(11), pp. 3523-3539. https://doi.org/10.1002/ece3.2140.
  4. Asfaw, A., Simane, B., Hassen, A., Bantider, A., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin, Weather and Climate Extremes, 19, pp. 29-41. https://doi.org/10.1016/j.wace.2017.12.002.
  5. Ayanlade, A., 2017. Remote sensing vegetation dynamics analytical methods: a review of vegetation indices techniques, Geoinformatica Polonica, 16, pp. 7-17. https://doi.org/10.4467/21995923GP.17.001.7188.
  6. Batten, G.D., 1998. Plant analysis using near infrared reflectance spectroscopy: The potential and the limitations, Australian Journal of Experimental Agriculture, 38(7), pp. 697–706. https://doi.org/10.1071/EA97146.
  7. Czerwinski, C.J., King, D.J., Mitchell, S.W., 2014. Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010, Remote Sensing of Environment, 141(Supplement C), pp. 188-200. https://doi.org/10.1016/j.rse.2013.11.006.
  8. Da Silva, R.M., Santos, C.A., Moreira, M., Corte-Real, J., Silva, V.C., Medeiros, I.C., 2015. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin, Natural Hazards, 77(2), pp. 1205-1221. https://doi.org/10.1007/s11069-015-1644-7.
  9. Dube, T., Gumindoga, W., Chawira, M., 2014. Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques, African Journal of Aquatic Science, 39(1), pp. 89-95. https://doi.org/10.2989/16085914.2013.870068.
  10. Erickson, A., Nitschke, C., Coops, N., Cumming, S., Stenhouse, G., 2015. Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada, Ecological Modelling, 313, pp. 94–102. https://doi.org/10.1016/j.ecolmodel.2015.06.027.
  11. Gao, X., Huete, A. R., Ni, W., & Miura, T., 2000. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 74(3), 609–620.
  12. Garbolino, E., Sanseverino-Godfrin, V., Hinojos-Mendoza, G., 2016. Reprint of: Describing and predicting the vegetation development of Corsica due to expected climate change and its impact on forest fire risk evolution, Safety Science, 97(Supplement C), pp. 81-87. https://doi.org/10.1016/j.ssci.2016.02.006.
  13. Goodarzi, M., Pourhashemi, M., Azizi, Z., 2019. Investigation on Zagros forests cover changes under the recent droughts using satellite imagery, Journal of Forest Science, 65(1), pp. 9-17. https://doi.org/10.17221/61/2018-JFS.
  14. Grover, V.I., 2015. Impact of Climate Change on the Water Cycle, in: Shrestha, S. Anal, A.K., Salam, P.A., van der Valk, M., (eds) Managing Water Resources under Climate Uncertainty, Examples from Asia, Europe, Latin America, and Australia. Springer Water, Springer International Publishing. https://doi.org/10.1007/978-3-319-10467-6_1.
  15. Guo, H., Zhang, Y., Lan, Z., Pennings, S.C., 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change, Global Change Biology, 19(9), pp. 2765-2774. https://doi.org/10.1111/gcb.12221.
  16. Huang, J., Islam, A.T., Zhang, F., Hu, Z., 2017. Spatiotemporal analysis of precipitation extremes affecting rice yield in Jiangsu province, southeast China, International Journal of Biometeorology, 61, pp. 1863-1872. https://doi.org/10.1007/s00484-017-1372-7.
  17. IPCC) Intergovernmental Panel on Climate Change), 2013. Annex I: Atlas of Global and Regional Climate Projections. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, pp. 1311-1394. [online] Available at: http://dx.doi.org/10.1017/CBO9781107415324.029.
  18. IPCC (Intergovernmental Panel on Climate Change), 2014. Human Health: Impacts, Adaptation, and Co-Benefits. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [online] Available at: https://doi.org/10.1017/CBO9781107415379.
  19. IPCC (Intergovernmental Panel on Climate Change), 2021. Summary for Policymakers. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3-32. [online] Available at: https://doi.org/10.1017/9781009157896.001.
  20. Jiang, Z., Huete, A. R., Didan, K., & Miura, T., 2006. Vegetation index performance for vegetation dynamics monitoring. Remote Sensing of Environment, 101(3), 366–378.
  21. Kantakumar, L.N. and Neelamsetti, P., 2015. Multi-temporal land use classification using hybrid approach. The Egyptian Journal of Remote Sensing and Space Science, 18(2), pp. 289-295. [online] Available at: https://doi.org/10.1016/j.ejrs.2015.09.003].
  22. Kendall, M.G., 1975. Rank Correlation Methods. 2nd ed. New York: Hafner. [online] Available at: https://doi.org/10.2307/1907752.
  23. Kerns, B.K., Powell, D.C., Mellmann-Brown, S., Carnwath, G., and Kim, J.B., 2018. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Climate Services, 10, pp. 33-43. [online] Available at: https://doi.org/10.1016/j.cliser.2017.07.002.
  24. Khayatnezhad, M., Fataei, E., and Imani, A.A., 2023. Integrated modeling of food–water–energy nexus for maximizing water productivity. Water Supply, 23(3), pp. 1362-1374. [online] Available at: https://doi.org/10.2166/ws.2023.038.
  25. Kohli, M., Mijiddorj, T.N., Suryawanshi, K.R., Mishra, C., Boldgiv, B., and Sankaran, M., 2021. Grazing and climate change have site-dependent interactive effects on vegetation in Asian montane rangelands. Journal of Applied Ecology, 58(3), pp. 539-549. [online] Available at: https://doi.org/10.1111/1365-2664.13781.
  26. Lamprecht, A., Semenchuk, P.R., Steinbauer, K., Winkler, M., and Pauli, H., 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytologist, 220(2), pp. 447-459. [online] Available at: https://doi.org/10.1111/nph.15290.
  27. Li, C., Zhuang, D., He, J., and Wen, K., 2023. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia. Journal of Geographical Sciences, 33(3), pp. 464-482. [online] Available at: https://doi.org/10.1007/s11442-023-2092-z.
  28. Mann, H.B. 1945. Nonparametric Tests Against Trend. Econometrica: Journal of the Econometric Society, 13(3), pp. 245-259. https://doi.org/10.2307/1907187.
  29. Mushore, T.D., Mutanga, O., Odindi, J., & Dube, T., 2017. Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto International, 32(8), pp. 886-899. https://doi.org/10.1080/10106049.2016.1188168.
  30. Nezhadnaderi, M. 2018. Management of Seawater Intrusion in Coastal Aquifers of Caspian Sea. Anthropogenic Pollution, 2(1), pp. 48-58. https://doi.org/10.22034/ap.2018.538412
  31. Parente, C., 2013. TOA reflectance and NDVI calculation for Landsat 7 ETM+ images of Sicily. Electronic International Interdisciplinary Conference, pp. 351-354. EDIS-Publishing Institution of the University of Zilina. https://hdl.handle.net/11367/23184.
  32. Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510.
  33. Rahman, M., Islam, R. & Islam, M., 2017. Long-term growth decline in Toona ciliata in a moist tropical forest in Bangladesh: Impact of global warming. Acta Oecologica, 80(Supplement C), pp. 8-17. https://doi.org/10.1016/j.actao.2017.02.004.
  34. Ren, Y., Liu, J., Liu, S., Wang, Z., Liu, T. & Shalamzari, M.J., 2022. Effects of Climate Change on Vegetation Growth in the Yellow River Basin from 2000 to 2019. Remote Sensing, 14(3), p. 687. https://doi.org/10.3390/rs14030687.
  35. Rostami, F., Attarod, P., Keshtkar, H. & Nazeri Tahroudi, M., 2022. Impact of climatic parameters on the extent of mangrove forests of southern Iran. Caspian Journal of Environmental Sciences, 20(4), pp. 671-682. https://doi.org/10.22124/CJES.2022.5719.
  36. Salehi, H., Meshkini, A., Shokripur Dizaj, H. & Najafi, S., 2019. Analysis of urban sprawl and its role in the trend of green space changes: Case study: City of Yazd. Anthropogenic Pollution, 3(1), pp. 11-24. https://doi.org/10.22034/AP.2019.576313.1026.
  37. Sameenezhad, Z.A., Fataei, E.B., Hassanpour, H.A., Ojaghi, A.K. & Jabbari, H., 2014. Evaluation of climate change influences on the watershed: A case study of the Balikhlou River, Ardabil, Iran. Indian Journal of Science and Research, 3(1), pp. 308-319.
  38. Sarvia, F., De Petris, S. & Borgogno-Mondino, E., 2021. Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy, 11(3), p. 555. https://doi.org/10.3390/agronomy11030555.
  39. Satari Yuzbashkandi, S. & Khalilian, S., 2020. On Projecting Climate Change Impacts on Soybean Yield in Iran: An Econometric Approach. Environmental Processes, 7, pp. 73-87. https://doi.org/10.1007/s40710-019-00400-y.
  40. Satti, Z., Naveed, M., Shafeeque, M., Ali, S., Abdullaev, F., Ashraf, T.M., Irshad, M. & Li, L., 2023. Effects of climate change on vegetation and snow cover area in Gilgit Baltistan using MODIS data. Environmental Science and Pollution Research International, 30(7), pp. 19149-19166. https://doi.org/10.1007/s11356-022-23445-3.
  41. Sen, P.K., 1968. Estimates of the regression coefficients based on Kendall’s tau. Journal of the American Statistical Association, 63(324), pp. 1379-1389.
  42. Senf, C., Leitão, P.J., Pflugmacher, D., van der Linden, S. & Hostert, P., 2015. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sensing of Environment, 156, pp. 527-536. https://doi.org/10.1016/j.rse.2014.10.018
  43. Stanisci, A., Frate, L., Morra Di Cella, U., Pelino, G., Petey, M., Siniscalco, C. & Carranza, M.L., 2016. Short-term signals of climate change in Italian summit vegetation: observations at two GLORIA sites. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 150(2), pp. 227-235. https://doi.org/10.1080/11263504.2014.968232
  44. Srivastava, A. & Chinnasamy, P., 2023. Watershed development interventions for rural water safety, security, and sustainability in the semi-arid region of Western India. Environment Development and Sustainability, 25(6). https://doi.org/10.1007/s10668-023-03387-7
  45. Thiele, J.C., Nuske, R.S., Ahrends, B., Panferov, O., Albert, M., Staupendahl, K., Junghans, U., Jansen, M., Saborowski, J., 2017. Climate change impact assessment a simulation experiment with Norway spruce for a forest district in Central Europe. Ecological Modelling, 346(Supplement C), pp. 30-47. https://doi.org/10.1016/j.ecolmodel.2016.11.013.
  46. Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.
  47. UNDP (United Nations Development Programme) and DoE (Department of Environment)., 2010. Iran second national communication to UNFCCC. National Climate Change Office at the Department of Environment on behalf of the Government of the Islamic Republic of Iran. Available at: http://unfccc.int/resource/docs/natc/snc_iran.pdf (Accessed: 30 November 2012).
  48. Vaisi, V., Ranjbar-Fordoei, A. & Mousavi, S.H., 2016. Multi-temporal changes detection of vegetation covers in Navah-Kooh semi-arid forests using Remote Sensing (1995-2015). Desert Ecosystem Engineering Journal, 4(9), pp. 57-70.
  49. Valiallahi, J., Soltani, A. & Ahmadi Eghbal, M., 2019. Evaluating Climate Change and Anthropogenic Effects on Inducing Salt Storms & Aerosol Hazards Risk in Urmia Lake. Anthropogenic Pollution, 3(1), pp. 25-32. https://doi.org/10.22034/AP.2018.578723.1028
  50. Workie, T.G. & Debella, H.J., 2018. Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Global Ecology and Conservation, 13, e00366. https://doi.org/10.1016/j.gecco.2017.e00366.
  51. Xie, Y., Sha, Z. & Yu, M., 2008. Remote sensing imagery in vegetation mapping: A review. Journal of Plant Ecology, 1(1), pp. 9-23. https://doi.org/10.1093/jpe/rtm005.
  52. Xue, S.Y., Xu, H.Y., Mu, C.C., Wu, T.H., Li, W.P., Zhang, W.X., Streletskaya, I., Grebenets, V., Sokratov, S., Kizyakov, A. & Wu, X.D., 2021. Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Advances in Climate Change Research, 12(4), pp. 456-465. https://doi.org/10.1016/j.accre.2021.04.003.
  53. Yazdani, M.H., Amininia, K., Safarianzengir, V., Soltani, N. & Parhizkar, H., 2021. Analyzing climate change and its effects on drought and water scarcity (case study: Ardabil, Northwestern Province of Iran). Sustainable Water Resources Management, 7, p. 16. https://doi.org/10.1007/s40899-021-00494-z.
  54. Yevenes, M.A., Figueroa, R. & Parra, O., 2018. Seasonal drought effects on the water quality of the Biobío River, Central Chile. Environmental Science and Pollution Research, 25(14), pp. 13844-13856. https://doi.org/10.1007/s11356-018-1415-6.
  55. Zhang, C. & Kovacs, J.M., 2012. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), pp. 693-712. https://doi.org/10.1007/s11119-012-9274-5.
  56. Zheng, K., Tan, L., Sun, Y., Wu, Y., Duan, Z., Xu, Y. & Gao, C., 2021. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecological Indicators, 126, p. 107648. https://doi.org/10.1016/j.ecolind.2021.107648.
  57. Zoungrana, B., Conrad, C., Amekudzi, L.K., Thiel, M., Da, E.D., Forkuor, G., Löw, F., 2015. Multi-temporal Landsat Images and Ancillary Data for Land Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West Africa. Remote Sensing, 7(9), pp. 12076-12102. https://doi.org/10.3390/rs70912076.