10.57647/j.jrs.2025.1504.31

GIS-aided site selection for solar panel installation in rangeland areas of Mashhad County of Iran

  1. Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
  2. Department of Environment, Tabas Office, South Khorasan Province, Tabas, Iran

Received: 2024-05-05

Revised: 2024-08-22

Accepted: 2024-11-08

Published in Issue 2025-09-14

How to Cite

Dastorani, M., & Jafari Shalamzari, M. (2025). GIS-aided site selection for solar panel installation in rangeland areas of Mashhad County of Iran. Journal of Rangeland Science, 15(4), 1-10. https://doi.org/10.57647/j.jrs.2025.1504.31

PDF views: 81

Abstract

Most areas of Iran enjoy more than 300 days of good sunshine for photovoltaic energy production and the potential for wind energy production is also immense. In this study we evaluated the suitability of Mashhad County rangelands in Iran for the installation of photovoltaic panels. Mashhad is a mega city with a growing population due to its religious importance and the traveling pilgrims coming to the city to visit the Holy Shrine each year. We evaluated the rangeland areas based on several factors including topographic features (slope gradient, slope direction and height), roads and infrastructure, built-up areas, environmentally protected areas, solar photovoltaic output potential, air temperature, land cover and active fault lines using the multicriteria evaluation method. Since most of the area is flat with minor elevations, there is no limitation for energy production. The largest share of the area has slope gradient of less than 15% (3303 km2), this factor also imposes no limitation. In terms of elevation also 42% (4335 km2) of the area below 2000m is suitable for solar farm construction. There are some 72 active faults in the area. In total, 7.3% of the total area is covered with protected areas accounting for ~720 km2 which is not suitable for solar farms. In terms of land cover, 72% of the area is available for constructing solar farms. There is also no limitation in terms of air temperature and potential PhotoVoltaic (PV) output. The final suitability map was obtained by combining these layers and then divided into five classes. Based on our results, the suitable class had the largest share of the final map. Highly suitable areas comprise 14.1% of the total area. The excluded lands from the analysis due to the limiting factors made up approximately 56% equal to 5811 km2. In total, Mashhad County has considerable potential for solar energy production.

Keywords

  • Climate Change,
  • Desert,
  • Photovoltaic,
  • Renewable,
  • Khorasan Razavi,
  • Iran

References

  1. Alamdari, P., Nematollahi, O., Alemrajabi, A. A., 2013. Solar energy potentials in Iran: A review. Renew. Sust. Energ. Rev., 21, 778-788.
  2. Asakereh, A., Soleymani, M., Sheikhdavoodi, M. J., 2017. A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: A case study in Khuzestan province, Iran. Sol. Energy, 155, 342-353.
  3. Bahrami, M., Abbaszadeh, P., 2013. An overview of renewable energies in Iran. Renew. Sust. Energ. Rev., 24, 198-208.
  4. Change, P. C. 2018. Global warming of 1.5°C. World Meteorological Organization: Geneva, Switzerland.
  5. Charabi, Y., Gastli, A., 2011. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew. Energy, 36 (9), 2554-2561.
  6. Dhar, A., Naeth, M. A., Jennings, P. D., El-Din, M. G., 2020. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci. Total Environ. 718, 134602.
  7. Ebhota, W. S., Jen, T.-C., 2020. Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast-tracking hybrid renewable energy systems. Int. J. Precis. Eng. Manuf., 7 (1), 97-117.
  8. El Ouderni, A. R., Maatallah, T., El Alimi, S., Nassrallah, S. B., 2013. Experimental assessment of the solar energy potential in the Gulf of Tunis, Tunisia. Renew. Sust. Energ. Rev. 20, 155-168.
  9. Farajzadeh, M., Taghilo, A., 2013. The Wind Energy Potential Zoning using GIS and Fuzzy MCDM-based Approach (Study Area: Zanjan Province, Iran). Mdrsjrns, 20 (2), 45-60.
  10. Fthenakis, V., Blunden, J., Green, T., Krueger, L., Turney, D. 2011. Large photovoltaic power plants: wildlife impacts and benefits. 37th IEEE Photovoltaic Specialists Conference, Seattle, USA, IEEE, 002011-002016.
  11. Gholami, A., Ameri, M., Zandi, M., Ghoachani, R. G., Eslami, S., Pierfederici, S., 2020. Photovoltaic potential assessment and dust impacts on photovoltaic systems in Iran. IEEE Journal of Photovoltaics, 10 (3), 824-837.
  12. Guaita-Pradas, I., Marques-Perez, I., Gallego, A., Segura, B., 2019. Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases. Environ. Monit. Assess, 191 (12), 1-17.
  13. Günen, M. A., 2021. A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey. Renew. Energy, 178, 212-225.
  14. Hamed, T. A., Alshare, A., 2022. Environmental Impact of Solar and Wind Energy Review. J. Sustain. Dev. Energy Water Environ. Syst., 10 (2), 1-23.
  15. Heitschmidt, R., Walker, J., 1996. Grazing management: technology for sustaining rangeland ecosystems? The Rangeland Journal, 18 (2), 194-215.
  16. Hoornweg, D., Pope, K., 2017. Population predictions for the world’s largest cities in the 21st century. Environ. Urban, 29 (1), 195-216.
  17. Ibrahim, G. R. F., Hamid, A. A., Darwesh, U. M., Rasul, A., 2021. A GIS-based Boolean logic-analytical hierarchy process for solar power plant (case study: Erbil Governorate—Iraq). Environ. Dev. Sustain., 23 (4), 6066-6083.
  18. Jafari, M., Gholami, A., Khalighi Sigaroudi, S., Alizadeh Shabani, A., Arzani, H., 2018. Site selection for rainwater harvesting for wildlife using multi-criteria evaluation (MCE) technique and GIS in the Kavir national park, Iran. J. Rangel. Sci., 8 (1), 77-92.
  19. Jafari Shalamzari, M., Zhang, W., Gholami, A., Zhang, Z., 2019. Runoff harvesting site suitability analysis for wildlife in sub-desert regions. Water, 11 (9), 1944.
  20. Jain, A., Nandakumar, K., Ross, A., 2005. Score normalization in multimodal biometric systems. Pattern Recogn., 38 (12), 2270-2285.
  21. Kashani, A. H., Izadkhast, P. S., Asnaghi, A., 2014. Mapping of solar energy potential and solar system capacity in Iran. Int. J. Sustain. Energy, 33 (4), 883-903.
  22. Kawajiri, K., Oozeki, T., Genchi, Y., 2011. Effect of Temperature on PV Potential in the World. Environ. Sci. Technol., 45 (20), 9030-9035.
  23. Lai, Y. J., Chou, M. D., Lin, P. H., 2010. Parameterization of topographic effect on surface solar radiation. J. Geophys. Res. Atmos., 115 (D1).
  24. Lu, Z., Zhang, Q., Miller, P. A., Zhang, Q., Berntell, E., Smith, B., 2021. Impacts of large‐scale Sahara solar farms on global climate and vegetation cover. Geophys. Res. Lett., 48 (2), e2020GL090789.
  25. Majidifard, M. R. 2003. Biostratigraphy, lithostratigraphy, ammonite taxonomy and microfacies analysis of the Middle and Upper Jurassic of northeastern Iran. Universität Würzburg.
  26. Marques-Perez, I., Guaita-Pradas, I., Gallego, A., Segura, B., 2020. Territorial planning for photovoltaic power plants using an outranking approach and GIS. J. Clean. Prod., 257, 120602.
  27. Musembi, M. N., Kiptoo, K. S., Yuichi, N., 2016. Design and analysis of solar dryer for mid-latitude region. Energy Procedia, 100, 98-110.
  28. Najafi, G., Ghobadian, B., Mamat, R., Yusaf, T., Azmi, W. H., 2015. Solar energy in Iran: Current state and outlook. Renew. Sust. Energ. Rev., 49, 931-942.
  29. Olson, M., Rupper, S., 2019. Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography. Cryosphere, 13 (1), 29-40.
  30. Peng, Z., Herfatmanesh, M. R., Liu, Y., 2017. Cooled solar PV panels for output energy efficiency optimisation. Energy Convers. Manag., 150, 949-955.
  31. Pimentel, D., Marklein, A., Toth, M. A., Karpoff, M., Paul, G. S., Mccormack, R., Kyriazis, J., Krueger, T., 2008. Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies, 1 (2), 41-78.
  32. Sadeghi, M., Karimi, M., 2017. GIS-based solar and wind turbine site selection using multi-criteria analysis: Case study Tehran, Iran. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 42, 469-476.
  33. Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., García-Cascales, M. S., 2013. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sust. Energ. Rev., 24, 544-556.
  34. Shahsavari, A., Yazdi, F. T., Yazdi, H. T., 2019. Potential of solar energy in Iran for carbon dioxide mitigation. : Int. j. sci. environ. technol., 16 (1), 507-524.
  35. Turney, D., Fthenakis, V., 2011. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sust. Energ. Rev., 15 (6), 3261-3270.
  36. Yousefi, H., Hafeznia, H., Yousefi-Sahzabi, A., 2018. Spatial site selection for solar power plants using a gis-based boolean-fuzzy logic model: A case study of Markazi Province, Iran. Energies, 11(7), 1648.
  37. Zadeh, L. A. 1996. Fuzzy sets. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh. World Scientific Publishing, 826 pages.