10.57647/j.jrs.2025.1502.12

Identification of suitable areas for the growth of Teucrium polium species using machine learning models (a case study of Khalil Abad and Kashmar Counties, Iran)

  1. Department Natural Resources, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
  2. Department Rehabilitation of Arid and Mountainous Regions, University of Tehran, Tehran, Iran
  3. Department Range and Watershed Management Ferdowsi, University of Mashhad, Mashhad, Iran

Received: 2023-07-10

Revised: 2024-05-01

Accepted: 2024-06-04

Published in Issue 2025-04-20

How to Cite

Momeni Damaneh, J., Ahmadi, J., Safdari, A. A., Jafar pour Chekab, Z., & Shams Beyranvand, S. (2025). Identification of suitable areas for the growth of Teucrium polium species using machine learning models (a case study of Khalil Abad and Kashmar Counties, Iran). Journal of Rangeland Science, 15(2). https://doi.org/10.57647/j.jrs.2025.1502.12

PDF views: 216

Abstract

With the advancement in computer technologies, the prediction of ecological niches for various plant species has become possible. The impact of climate change on the distribution of plants could be investigated using species distribution models. This study aimed to identify the climatic and environmental factors influencing the distribution of Teucrium polium species and determine its geographic range in Kashmar and Khalilabad counties, Khorasan Razavi province, Iran. To achieve this, 75 bioclimatic variables encompassing soil, topography, climate, and geology factors were initially analyzed for correlation, and variables with correlation coefficients higher than 0.80 were eliminated. The data of 57 GPS-recorded presence points were collected from two areas during 2021 −2022. The environmental data and presence points were processed and predicted using the BIOMOD2 package within the R software, which encompasses 11 models. The models were evaluated using Cohen’s kappa coefficient (KAPPA), True Skill Statistic (TSS), and Receiver Operating Characteristic (ROC) indices. Model accuracy assessment revealed that the Random Forest (RF) model
achieved 99.7% accuracy while the Ensemble model achieved 99.4% accuracy, indicating excellent modeling precision. The relative importance of different variables in the selected models were as follows: in the RF model, silt at a depth of 30 − 60 and 15 − 30 cm, topographic humidity index, annual mean temperature, and daily temperature range; and for Ensemble model, nitrogen at a depth of 15 − 30 cm, topographic humidity index, soil bulk density at a depth of 5 − 15 cm, silt at a depth of 30 − 60 cm, and nitrogen at a depth of 15 − 5 cm, highlighting the influence of soil factors on the species distribution. The obtained results could be utilized for the conservation, management, and expansion of Teucrium polium habitats in similar areas.

Keywords

  • Habitat suitability,
  • Teucrium polium,
  • Soil properties,
  • Machine Learning,
  • BIOMOD2

References

  1. Abdollahi, J., Arzani, H., Naderi, H., Arab Zade, M. R. 2012. 'Effect of precipitation and high-temperature variability on forage production of some plant species in the Yazd steppe rangelands during the period of 2000-2008 (Case study: Ernan region)', Journal of Arid Biome, 2(1), 58-69. (In Persian).
  2. Abdollahi, J., Naderi, H., 2012. The effect of topographic variables and soil physicochemical properties on the performance of factors affecting the growth of Artemisia sieberi in the steppe rangelands of Nedushan, Yazd. Journal of Watershed Management Research (Research and Development), 25(4): 62-52. (In Persian).
  3. Barnes, P.W. and Harrison, A.T., 1982. Species distribution and community organization in a Nebraska sandhill mixed prairie as influenced by plant/soil-water relationships. Oecologia, 52, 192-201.
  4. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377.
  5. Chen, J., Jiang, J., 2021. Application of machine learning models in plant habitat suitability prediction: A review. Ecological Modeling, 438, 109395.
  6. Cheng, Y.Y., Chan, P.P. and Qiu, Z.W., 2012, July. Random forest-based ensemble system for short term load forecasting. In 2012 international conference on machine learning and cybernetics (Vol. 1, 52-56). IEEE.
  7. Cozzani, S., Muselli, A., Desjobert, J.M., Bernardini, A.F., Tomi, F. and Casanova, J., 2005. Chemical composition of essential oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour and Fragrance Journal, 20(4), 436-441.
  8. Damaneh, J.M., Ahmadi, J., Rahmanian, S., Sadeghi, S.M.M., Nasiri, V. and Borz, S.A., 2022. Prediction of wild pistachio ecological niche using machine learning models. Ecological Informatics, 72,101907.
  9. Díaz-Varela, R.A., Colombo, R., Meroni, M., Calvo-Iglesias, M.S., Buffoni, A. and Tagliaferri, A., 2010. Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts. Ecological Modeling, 221(4), 621-633.
  10. El Atki, Y., Aouam, I., Taroq, A., Lyoussi, B., Taleb, M. and Abdellaoui, A., 2019. Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Materials Today: Proceedings, 13, 777-783.
  11. Elith, J., Leathwick, J.R. and Hastie, T. 2008. A working guide to boosted regression trees. Journal of animal ecology, 77(4), 802-813.
  12. Ernakovich, J.G., Hopping, K.A., Berdanier, A.B., Simpson, R.T., Kachergis, E.J., Steltzer, H. and Wallenstein, M.D., 2014. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10), 3256-3269.
  13. Falah-Hosseini, H., Larijani, B., Fakhraee, H., Rajabipour, B., Akhoondzadeh, S., Toolit, T., Hashemzadeh, R., 2004. Clinical trial on the effect of the extract of the seed of Silybum marianum (silibinin) on blood lipid in patients with type 2 diabetes with hyperlipidemia. Iranian Journal of Diabetes and Metabolism, 3(2): 201-206. (In Persian).
  14. Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P., Revilla, N.S., Quisiyupanqui, M.N.R. and Saatchi, S., 2011. Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783-791.
  15. Fielding, A.H. and Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 24(1), 38-49.
  16. Galton, F., 1892. Fingerprints. Macmillan and Company.
  17. Guisan, A. and Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.
  18. Guo, Y., Li, X., Zhao, Z., Wei, H., Gao, B. and Gu, W. 2017. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Scientific reports, 7(1), 46221.
  19. Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M., Tatian, M. R. 2017. Forecasts of climate change effects on Amygdalus scoparia potential distribution by using ensemble modeling in Central Zagros, Journal of RS and GIS for Natural Resources, 8(3), 1-14. (In Persian).
  20. Kargar, M., Jafarian, Z., Tamartash, R., Alavi, S. J. 2018. Comparison of non-parametric and parametric species distribution models (SDM) in determining the habitat of dominant rangeland species (Case study: Khetteh Riz Rangelands), 25(3), 512-523, (In Persian).
  21. Koocheki, A., Nasiri Mahalati, M., Azizi, G. Khazaee, H., 2008. Study of agroecological requirements of Teucrium polium L. plants. Iranian Journal of Crop Sciences, 6(2): 395-404. (In Persian).
  22. Kumari, N., Srivastava, A. and Dumka, U.C. 2021. A long-term spatiotemporal analysis of vegetation greenness over the Himalayan Region using Google Earth Engine. Climate, 9(7), 109.
  23. Majdoub, S., Dall’Acqua, S., El Mokni, R., Hammami, S. and Peron, G., 2022. Chemical composition and antioxidant activity of essential oil from the aerial parts of Teucrium luteum (Mill.) Degen subsp. flavovirens (Batt.) Greuter & Burdet growing wild in Tunisia. Applied Sciences, 12(15), 7370.
  24. Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., Farrashi, A. 2022a. Predicting the geographical distribution of the genus Ferula (Ferula spp.) using habitat suitability modeling (Case study: Razavi and North Khorasan Provinces)', Ecosystem Management, 2(1), 25-35. (In Persian).
  25. Momeni Damaneh, J., Tajbakhsh, S.M., Ahmadi, J., Safdari, A., 2022b. Comparison of species distribution models in determining the habitat suitability of wild pistachio (Pistacia vera L.) in Khorasan Razavi province. Water and Soil Management and Modeling, 3(4), 77-92. (In Persian).
  26. Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., Farashi, A. 2021. Properly predict the growth of (Ferula assa-foetida L.) in northeastern Iran using the maximum entropy model’, Iranian Journal of Range and Desert Research, 28(3), 578-592.
  27. Momeni Damaneh, J., Esmaeili Pour, Y., Gholami, H., Farashi, A., 2020. Application of maximum entropy model in determining the potential habitat of Astracantha gossypina (Fisch.) Podlech in northeastern Iran. Plant Ecosystem Conservation, 19, 236-217. (In Persian).
  28. Moradi, H.R., Vazirizadeh, A., Rafiee, M., 2019. Habitat suitability modeling for plant species using machine learning algorithms. Ecological Indicators, 101, 440–448.
  29. Mozaffarian, V., 2012. Medicinal and Aromatic Plants of Iran. Tehran: Farhang Moaser Publishers. (In Persian)
  30. Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological modeling, 190(3-4), 231-259.
  31. Pirisahragard, H. and Pahlavan-Rad, M.R. 2020. Prediction of soil properties using random forest with sparse data in a semi-active volcanic mountain. Eurasian Soil Science, 53, 1222-1233.
  32. Poyan, S., Rahmanian, S., Amindin, A. and Pourghasemi, H.R., 2022. Spatial and seasonal modeling of the land surface temperature using random forest. In Computers in Earth and Environmental Sciences (pp. 221-234). Elsevier.
  33. Rahmanian, S., Pouyan, S., Karami, S. and Pourghasemi, H.R., 2022. Predictive habitat suitability models for Teucrium polium L. using boosted regression trees. In Computers in Earth and Environmental Sciences (pp. 245-254). Elsevier.
  34. Renner, I.W. and Warton, D.I., 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69(1), 274-281.
  35. Salmaki, Y., Kattari, S., Heubl, G. and Bräuchler, C., 2016. Phylogeny of non‐monophyletic Teucrium (Lamiaceae: Ajugoideae): Implications for character evolution and taxonomy. Taxon, 65(4), 805-822.
  36. Sarhangzadeh, J., 2020. Modeling habitat suitability of Juniperus foetidissima Willd. in the Arasbaran Biosphere Reserve. Forest Research and Development, 5(1): 93-112. (In Persian).
  37. Smeeton, N.C. 1985. Early history of the kappa statistic. Biometrics, 41, 795.
  38. Sproull, G.J., Quigley, M.F., Sher, A. and González, E., 2015. Long‐term changes in composition, diversity and distribution patterns in four herbaceous plant communities along an elevational gradient. Journal of Vegetation Science, 26(3), 552-563.
  39. Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293.
  40. Thuiller, W., 2003. Editorial commentary on ‘BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change’. Global change biology, 20(12), 3591-3592.
  41. Thuiller, W., Lafourcade, B., Engler, R. and Araújo, M.B., 2009. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373.
  42. Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, J.M., Hoegh-Guldberg, O. and Bairlein, F., 2002. Ecological responses to recent climate change. Nature, 416(6879), 389-395.
  43. Zarabi, M., Haghdoosti, R., Yousefi, H., 2017. Modeling the habitat suitability of organic wild pistachio (Pistacia vera) using MaxEnt method in the forest area of Sarghas (Gonbadli sub-basin, Khorasan Razavi province). Ecohydrology, 4(3): 817-824. (In Persian).
  44. Zare Chahuki, M.A., Abbasi, M., 2018. Modeling the habitat prediction of Rheum ribes L. using the maximum entropy (Maxent) model in the Chah Tash rangelands of Yazd province. Journal of Rangeland Science and Watershed Management, 71(2): 379-391. (In Persian).
  45. Zarkami, S., Ahmadi, M., Abedini, A., 2021. Modeling the habitat preference of the invasive plant Eichhornia crassipes in some wetlands of Gilan province. Iranian Journal of Plant Biology (Iranian Journal of Biology), 34(2): 286-275. (In Persian).