10.1007/s40097-014-0133-y

Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample

  1. Department of Nanosciences and Technology, School of Science and Humanities, Karunya University, Coimbatore, 641 114, IN
  2. Department of Chemistry, School of Science and Humanities, Karunya University, Coimbatore, 641 114, IN
Cover Image

Published in Issue 22-10-2014

How to Cite

Mohamed Jaffer Sadiq, M., & Samson Nesaraj, A. (2014). Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. Journal of Nanostructure in Chemistry, 5(1 (March 2015). https://doi.org/10.1007/s40097-014-0133-y

HTML views: 24

PDF views: 102

Abstract

Abstract In recent years, the use of metal oxides as photocatalysts for degradation of organic substances has attracted the attention of the scientific community. Metal oxide nanoparticles have been studied due to their novel optical, electronic, magnetic, thermal and potential applications as catalysts, gas sensors, photo-electronic devices, etc. In this research work, we report a simple, soft chemical route for synthesizing BaWO 4 nanoparticles using cheap chemicals such as barium nitrate (precursor salt) and sodium tungstate (precipitating agent). The final product was dried at room temperature overnight and calcined at 400 °C and 800 °C for 2 h to get phase-pure product. The prepared nanoparticles (as prepared and heat-treated samples) were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and UV–Vis spectroscopy techniques. Photocatalytic degradation characteristics of Rhodamine B in water using BaWO 4 nanoparticles were studied and reported.

Keywords

  • BaWO4 nanoparticles,
  • Soft chemical method,
  • Characterization,
  • Photocatalytic studies

References

  1. Ameta et al. (2013) Photocatalytic degradation of methylene blue over ferric tungstate (pp. 172-180)
  2. Vinu and Madras (2009) Kinetics of sonophotocatalytic degradation of anionic dyes with Nano-TiO2 (pp. 473-479) https://doi.org/10.1021/es8025648
  3. Mahanta et al. (2008) Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics (pp. 10153-10157) https://doi.org/10.1021/jp803903x
  4. Dafnopatidou et al. (2007) Reactive dyestuffs removal from aqueous solutions by flotation (pp. 2125-2132) https://doi.org/10.1021/ie060993v
  5. Marin et al. (2012) Organic photocatalysts for the oxidation of pollutants and model compounds (pp. 1710-1750) https://doi.org/10.1021/cr2000543
  6. Manjon, F.J., Errandonea, D., Garro, N., Pellicer-Porres, J., Rodriguez-Hernandez, P., Radescu, S., Lopez-Solano, J., Mujica, A., Munoz, A.: Lattice dynamics of sheelite tungstates under high pressure I. BaWO
  7. 4
  8. . Physical Rev. B.
  9. 74
  10. , 144111–144117 (2006)
  11. Sinelnikov et al. (1996) The Nature of green luminescence centers in scheelite (pp. 999-1001)
  12. Yang et al. (2009) Synthesis and characterization of new red phosphors for white LED applications (pp. 3771-3774) https://doi.org/10.1039/b819499h
  13. Tamaki et al. (1995) Application of metal tungstate–carbonate composite to nitrogen oxides sensor operative at elevated temperature 24(25) (pp. 396-399) https://doi.org/10.1016/0925-4005(95)85089-9
  14. Balakshy et al. (2001) Acousto-optic collinear diffraction of a strongly divergent optical beam (pp. S87-S92) https://doi.org/10.1088/1464-4258/3/4/365
  15. Veresnikova, A.V., Lubsandorzhiev, B.K., Barabanov, I.R., Grabmayr, P., Greiner, D., Jochum, J., Knapp, M., Ostwald, C., Poleshuk, R.V., Ritter, F., Shaibonov, B.A.M., Vyatchin, Y.E., Meierhofer, G.: Fast scintillation light from CaMoO
  16. 4
  17. crystals. Nucl. Instrum. Methods Phys. Res. Sect. A.
  18. 603
  19. , 529–531 (2009)
  20. Vidya, S., Sam Solomon, Thomas, J.K.: Synthesis, characterization, and low temperature sintering of nanostructured BaWO
  21. 4
  22. for optical and LTCC applications. Adv. Condensed Matt. Phy.
  23. 409620,
  24. –11 (2013)
  25. Choi et al. (2007) Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds 27(8–9) (pp. 3063-3067) https://doi.org/10.1016/j.jeurceramsoc.2006.11.037
  26. Liao et al. (2009) Synthesis process and luminescence properties of Tm3+ in AWO4 (A = Ca, Sr, Ba) blue phosphors 487(1–2) (pp. 758-762) https://doi.org/10.1016/j.jallcom.2009.08.068
  27. Fan, L., Fan, Y.X., Duan, Y.H., Wang, Q., Wang, H.T., Jia, G.H., Tu, C.Y.: Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser. Appl. Phys. B-Lasers Optics.
  28. 94(4)
  29. , 553–557 (2009)
  30. Ivleva et al. (2007) Growth of optically homogeneous BaWO4 single crystals for Raman lasers 304(1) (pp. 108-113) https://doi.org/10.1016/j.jcrysgro.2007.02.020
  31. Cavalcante et al. (2009) Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4 9(2) (pp. 1002-1012) https://doi.org/10.1021/cg800817x
  32. Siriwong et al. (2011) Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods (pp. 1564-1569) https://doi.org/10.1039/C0CE00402B
  33. Shi et al. (2008) Spectroscopic properties and intense redlight emission of (Ca, Eu, M)WO4 (M = Mg, Zn, Li) (pp. 396-399) https://doi.org/10.1016/j.saa.2007.04.012
  34. Huang and Jia (2003) Structural properties of SrWO4 films synthesized by pulsed-laser deposition (pp. 95-98) https://doi.org/10.1016/S0040-6090(03)01026-5
  35. Chen et al. (2008) Luminescent properties of BaWO4 films prepared by cell electrochemical technique (pp. 3434-3436) https://doi.org/10.1016/j.matlet.2008.02.083
  36. Afanasiev (2007) Molten salt synthesis of barium molybdate and tungstate microcrystals (pp. 4622-4626) https://doi.org/10.1016/j.matlet.2007.02.061
  37. Lima et al. (2007) Photoluminescent property of mechanically milled BaWO4 powder (pp. 741-746) https://doi.org/10.1016/j.jlumin.2006.11.005
  38. Zhang et al. (2006) One-step solvothermal synthesis of high ordered BaWO4 and BaMoO4 nanostructures (pp. 240-243) https://doi.org/10.1016/j.matchemphys.2005.06.061
  39. Thongtem et al. (2008) Characterization of MeWO4 (Me = Ba, Sr and Ca) nanocrystallines prepared by sonochemical method (pp. 7581-7585) https://doi.org/10.1016/j.apsusc.2008.01.092
  40. Na L., Faming G., Li H., Dawei G.: DNA-Templated Rational Assembly of BaWO
  41. 4
  42. Nano Pair-Linear Arrays, J. Phys. Chem. C.
  43. 114,
  44. –16121 (2010)
  45. Lee (2013) Sung Hoon Park, Young-Kwon Park, Byung Hoon Kim, Sun-Jae Kim, Sang-Chul Jung: rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma 7(1) https://doi.org/10.1186/1752-153X-7-156
  46. Wilhelm and Stephan (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-sphere (pp. 19-25) https://doi.org/10.1016/j.jphotochem.2006.05.003
  47. Mohamed et al. (2013) Optimization of preparation conditions of ZnO–SiO2 xerogel by sol–gel technique for photodegradation of methylene blue dye (pp. 57-63) https://doi.org/10.1007/s13204-012-0074-z
  48. Cullity, B.D.: Elements of X-ray diffraction 2nd Ed. Addison-Wesley Publishing Company Inc.: (1978)
  49. Rao (1963) Academic Press
  50. Pontes et al. (2003) Preparation, structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route (pp. 3001-3007) https://doi.org/10.1016/S0955-2219(03)00099-2
  51. Phuruangrat et al. (2010) Analysis of lead molybdate and lead tungstate synthesized by a sonochemical method (pp. 342-345) https://doi.org/10.1016/j.cap.2009.06.024
  52. Burcham and Wachs (1998) Vibrational analysis of the two non-equivalent, tetrahedral tungstate(WO4) units in Ce2(WO4)3 and La2(WO4)3 (pp. 1355-1368) https://doi.org/10.1016/S1386-1425(98)00036-5
  53. Phuruangrat et al. (2012) Characterization of starfruit-like PbWO4 microstructured clusters synthesized by a solution route 13(5) (pp. 514-516)
  54. Gulino et al. (2003) A novel self-liquid MOCVD precursor for Co3O4 thin films (pp. 3748-3752) https://doi.org/10.1021/cm034305z
  55. Faisal et al. (2011) Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor (pp. 594-600) https://doi.org/10.1016/S1005-0302(11)60113-8
  56. Cimino et al. (1971) Structural, magnetic, and optical properties of nickel oxide supported on βeta.- and γ-gamma-aluminas (pp. 1044-1050) https://doi.org/10.1021/j100678a005
  57. Yin et al. (2010) Controlled synthesis and photoluminescence properties of BaXO4 (X = W, Mo) hierarchical nanostructures via a facile solution route (pp. 789-792) https://doi.org/10.1016/j.matlet.2010.01.024
  58. Wang et al. (2009) Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition (pp. 677-684) https://doi.org/10.1016/j.jssc.2008.12.014
  59. Blasse (1997) Classical phosphors: a Pandora’s box (pp. 129-134) https://doi.org/10.1016/S0022-2313(96)00166-4
  60. Thresiamma et al. (2008) Fascinating morphologies of lead tungstate nanostructures by chimie douce approach (pp. 567-575) https://doi.org/10.1007/s11051-007-9285-8
  61. Shen et al. (2011) Microwave-assisted synthesis of BaWO4 nanoparticles and its photoluminescence properties (pp. 2956-2958) https://doi.org/10.1016/j.matlet.2011.06.033
  62. Asir et al. (2011) Photodegradation of rhodamine 6G and phenol red by nanosized TiO2 under solar irradiation (pp. 121-128) https://doi.org/10.1016/j.jscs.2010.06.005
  63. Mills et al. (1993) Water purification by semiconductor photocatalysis 1993(22) (pp. 417-425) https://doi.org/10.1039/cs9932200417