10.1007/s40097-022-00500-6

Porphyrin-based metal–organic frameworks: focus on diagnostic and therapeutic applications

  1. Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, IR
  2. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR
Porphyrin-based metal–organic frameworks: focus on diagnostic and therapeutic applications

Published in Issue 16-05-2022

How to Cite

Hassanzadeh Goji, N., Ramezani, M., Sh. Saljooghi, A., & Alibolandi, M. (2022). Porphyrin-based metal–organic frameworks: focus on diagnostic and therapeutic applications. Journal of Nanostructure in Chemistry, 14(2 (April 2024). https://doi.org/10.1007/s40097-022-00500-6

Abstract

Abstract As a hybrid material, metal organic frameworks (MOFs) contain unique characteristics for biomedical applications such as high porosity, large surface area, different crystalline morphologies, and nanoscale dimensions. These frameworks are assembled through the interconnection of organic linkers with metal nodes, while the engineering of an MOF for biomedical applications requires versatile linkers with acceptable symmetry. Porphyrin, as an organic linker with interesting photochemical and photophysical properties, attracted the attention of many for engineering the potent multifunctional porphyrinic metal organic frameworks (PMOFs). In this regard, a large number of approaches were conducted for designing robust practical PMOFs with a wide range of applications. In this review, we introduced another perspective of MOFs and coordination polymers constructed from porphyrinic linkers with a special focus on those synthesized by meso-tetrakis (4-carboxyphenyl) porphyrin (TCPP). In the following, we summarized and discussed the different types of PMOFs and their biomedical applications in terms of diagnostic agent, therapeutic platform, and drug delivery vehicle. Graphical abstract

Keywords

  • Porphyrin,
  • Metal organic frameworks,
  • Coordination polymer,
  • Drug delivery

References

  1. Xu et al. (2018) Two-dimensional metal–organic framework nanosheets: a rapidly growing class of versatile nanomaterials for gas separation, MALDI-TOF matrix and biomimetic applications 24(57) (pp. 15131-15142) https://doi.org/10.1002/chem.201800556
  2. Kuppler et al. (2009) Potential applications of metal–organic frameworks 253(23–24) (pp. 3042-3066) https://doi.org/10.1016/j.ccr.2009.05.019
  3. Zhou et al. (2012) Introduction to metal–organic frameworks 112(2) (pp. 673-674) https://doi.org/10.1021/cr300014x
  4. Kukkar et al. (2018) Recent progress in biological and chemical sensing by luminescent metal–organic frameworks (pp. 1346-1370) https://doi.org/10.1016/j.snb.2018.06.128
  5. Xie et al. (2011) A metalloporphyrin functionalized metal–organic framework for selective oxidization of styrene 47(19) (pp. 5521-5523)
  6. Gao et al. (2013) Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake 15(45) (pp. 9320-9323) https://doi.org/10.1039/c3ce41090k
  7. Feng et al. (2013) Metal–organic frameworks based on previously unknown Zr8/Hf8 cubic clusters 52(21) (pp. 12661-12667) https://doi.org/10.1021/ic4018536
  8. Nandi and Goldberg (2014) Fixation of CO2 in bi-layered coordination networks of zinc tetra (4-carboxyphenyl) porphyrin with multi-component [Pr2Na3(NO3)(H2O)3] connectors 50(88) (pp. 13612-13615)
  9. Wang et al. (2014) A series of highly stable mesoporous metalloporphyrin Fe-MOFs 136(40) (pp. 13983-13986) https://doi.org/10.1021/ja507269n
  10. Beyzavi et al. (2015) A hafnium-based metal–organic framework as a nature-inspired tandem reaction catalyst 137(42) (pp. 13624-13631) https://doi.org/10.1021/jacs.5b08440
  11. Zhang et al. (2015) An efficient catalyst based on a metal metalloporphyrinic framework for highly selective oxidation 145(2) (pp. 589-595) https://doi.org/10.1007/s10562-014-1433-z
  12. Yuan et al. (2015) A single crystalline porphyrinic titanium metal–organic framework 6(7) (pp. 3926-3930) https://doi.org/10.1039/C5SC00916B
  13. Yamabayashi et al. (2018) Scaling up electronic spin qubits into a three-dimensional metal–organic framework 140(38) (pp. 12090-12101) https://doi.org/10.1021/jacs.8b06733
  14. Chen et al. (2019) Folic acid-nanoscale gadolinium-porphyrin metal–organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma (pp. 57-74) https://doi.org/10.2147/IJN.S177880
  15. Kim et al. (2019) MOF× biopolymer: collaborative combination of metal–organic framework and biopolymer for advanced anticancer therapy 11(31) (pp. 27512-27520) https://doi.org/10.1021/acsami.9b05736
  16. Charbgoo et al. (2018) MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide 14(3) (pp. 685-697) https://doi.org/10.1016/j.nano.2017.12.010
  17. Liu et al. (2017) Zirconium-based nanoscale metal–organic framework/poly (ε-caprolactone) mixed-matrix membranes as effective antimicrobials 9(47) (pp. 41512-41520) https://doi.org/10.1021/acsami.7b15826
  18. Abdelhamid (2021) Biointerface between ZIF-8 and biomolecules and their applications 11(1) (pp. 8283-8297)
  19. Abdelhamid (2021) Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: a review 28(34) (pp. 7023-7075) https://doi.org/10.2174/0929867328666210608143703
  20. An et al. (2012) Metal-adeninate vertices for the construction of an exceptionally porous metal–organic framework 3(1) (pp. 1-6) https://doi.org/10.1038/ncomms1618
  21. McKinlay et al. (2010) BioMOFs: metal–organic frameworks for biological and medical applications 49(36) (pp. 6260-6266) https://doi.org/10.1002/anie.201000048
  22. Nie et al. (2020) FRET as a novel strategy to enhance the singlet oxygen generation of porphyrinic MOF decorated self-disinfecting fabrics https://doi.org/10.1016/j.cej.2020.125012
  23. Orellana-Tavra et al. (2015) Amorphous metal–organic frameworks for drug delivery 51(73) (pp. 13878-13881)
  24. Lázaro et al. (2021) The excellent biocompatibility and negligible immune response of the titanium heterometallic MOF MUV-10 9(31) (pp. 6144-6148) https://doi.org/10.1039/D1TB00981H
  25. Park et al. (2018) 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging 140(16) (pp. 5493-5499) https://doi.org/10.1021/jacs.8b01613
  26. Yan et al. (2021) Co (ii)-based metal–organic framework induces apoptosis through activating the HIF-1α/BNIP3 signaling pathway in microglial cells 8(10) (pp. 2866-2882) https://doi.org/10.1039/D1EN00719J
  27. Horcajada et al. (2010) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging 9(2) (pp. 172-178) https://doi.org/10.1038/nmat2608
  28. Zhu et al. (2018) Versatile surface functionalization of metal–organic frameworks through direct metal coordination with a phenolic lipid enables diverse applications 28(16) https://doi.org/10.1002/adfm.201705274
  29. Cui et al. (2021) Outstanding drug-loading/release capacity of hollow Fe-metal–organic framework-based microcapsules: a potential multifunctional drug-delivery platform 60(3) (pp. 1664-1671) https://doi.org/10.1021/acs.inorgchem.0c03156
  30. Sun et al. (2021) Dual functions of pH-sensitive cation Zr-MOF for 5-Fu: large drug-loading capacity and high-sensitivity fluorescence detection 50(30) (pp. 10524-10532) https://doi.org/10.1039/D1DT01772A
  31. Nirosha Yalamandala et al. (2021) Advances in functional metal–organic frameworks based on-demand drug delivery systems for tumor therapeutics 1(8) https://doi.org/10.1002/anbr.202100014
  32. Lan et al. (2019) Nanoscale metal–organic frameworks for phototherapy of cancer (pp. 65-81) https://doi.org/10.1016/j.ccr.2017.09.007
  33. Pereira et al. (2016) Porphyrin-based metal–organic frameworks as heterogeneous catalysts in oxidation reactions 21(10) https://doi.org/10.3390/molecules21101348
  34. Sun et al. (2016) An in situ one-pot synthetic approach towards multivariate zirconium MOFs 128(22) (pp. 6581-6585) https://doi.org/10.1002/ange.201602274
  35. Zhang et al. (2021) Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2 9(34) (pp. 11503-11511) https://doi.org/10.1021/acssuschemeng.1c03737
  36. He et al. (2021) 5, 10, 15, 20-tetrakis (4-carboxylphenyl) porphyrin functionalized NiCo2S4 yolk-shell nanospheres: excellent peroxidase-like activity, catalytic mechanism and fast cascade colorimetric biosensor for cholesterol https://doi.org/10.1016/j.snb.2020.128850
  37. Kong et al. (2021) In situ porphyrin substitution in a Zr (IV)-MOF for stability enhancement and photocatalytic CO2 reduction 17(22) https://doi.org/10.1002/smll.202005357
  38. Mathew and Sujatha (2021) Interactions of porphyrins with DNA: a review focusing recent advances in chemical modifications on porphyrins as artificial nucleases https://doi.org/10.1016/j.jinorgbio.2021.111434
  39. Feng et al. (2014) A highly stable porphyrinic zirconium metal–organic framework with shp-a topology 136(51) (pp. 17714-17717) https://doi.org/10.1021/ja510525s
  40. Paolesse et al. (2017) Porphyrinoids for chemical sensor applications 117(4) (pp. 2517-2583) https://doi.org/10.1021/acs.chemrev.6b00361
  41. O’Connor et al. (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy 85(5) (pp. 1053-1074) https://doi.org/10.1111/j.1751-1097.2009.00585.x
  42. Rodrigues et al. (2018) Photodynamic therapy at low-light fluence rate: In vitro assays on colon cancer cells 25(1) (pp. 1-6) https://doi.org/10.1109/JSTQE.2018.2889426
  43. Tsolekile et al. (2019) Porphyrin as diagnostic and therapeutic agent 24(14) https://doi.org/10.3390/molecules24142669
  44. Rotenberg and Margalit (1985) Deuteroporphyrin-albumin binding equilibrium. The effects of porphyrin self-aggregation studied for the human and the bovine proteins 229(1) (pp. 197-203) https://doi.org/10.1042/bj2290197
  45. Kano et al. (1987) Self aggregation of cationic porphyrin in water 60(4) (pp. 1281-1287) https://doi.org/10.1246/bcsj.60.1281
  46. Hachimine et al. (2007) Sonodynamic therapy of cancer using a novel porphyrin derivative, DCPH-P-Na (I), which is devoid of photosensitivity 98(6) (pp. 916-920) https://doi.org/10.1111/j.1349-7006.2007.00468.x
  47. Cheng et al. (2016) An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy 26(43) (pp. 7847-7860) https://doi.org/10.1002/adfm.201603212
  48. Liu et al. (2017) Multifunctional metal–organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy 9(3) (pp. 2150-2158) https://doi.org/10.1021/acsami.6b14446
  49. Chen et al. (2021) Metal–organic framework-based nanoagents for effective tumor therapy by dual dynamics-amplified oxidative stress 13(38) (pp. 45201-45213) https://doi.org/10.1021/acsami.1c11032
  50. Yu et al. (2021) Silk fibroin-capped metal–organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy (pp. 545-560) https://doi.org/10.1016/j.actbio.2021.11.009
  51. Zhao et al. (2021) Tailoring aggregation extent of photosensitizer to boost phototherapy potency for eliciting systemic antitumor immunity 34(8) https://doi.org/10.1002/adma.202106390
  52. Huang et al. (2019) NIR-activated “OFF/ON” Photodynamic therapy by a hybrid nanoplatform with upper critical solution temperature block copolymers and gold nanorods 20(10) (pp. 3873-3883) https://doi.org/10.1021/acs.biomac.9b00963
  53. Tian et al. (2019) GSH-activated MRI-guided enhanced photodynamic-and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework 55(44) (pp. 6241-6244)
  54. Lismont et al. (2017) Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives 27(14) https://doi.org/10.1002/adfm.201606314
  55. Judzewitsch et al. (2021) Photo-enhanced antimicrobial activity of polymers containing an embedded photosensitiser 133(45) (pp. 24450-24458) https://doi.org/10.1002/ange.202110672
  56. Zeng et al. (2018) π-extended benzoporphyrin-based metal–organic framework for inhibition of tumor metastasis 12(5) (pp. 4630-4640) https://doi.org/10.1021/acsnano.8b01186
  57. Lo et al. (2020) The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer 49(4) (pp. 1041-1056) https://doi.org/10.1039/C9CS00129H
  58. Babu et al. (2020) Sn (iv) N-confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region 49(43) (pp. 15180-15183) https://doi.org/10.1039/D0DT03296D
  59. Guo et al. (2018) Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers 54(7) (pp. 845-848)
  60. Montoya et al. (2005) Natural anthraquinones probed as Type I and Type II photosensitizers: singlet oxygen and superoxide anion production 78(1) (pp. 77-83) https://doi.org/10.1016/j.jphotobiol.2004.09.009
  61. Hadjur, C., Wagnières, G., Ihringer, F., Monnier, P., van den Bergh, H.: Production of the free radicals O
  62. .-
  63. 2
  64. and
  65. .
  66. OH by irradiation of the photosensitizer zinc (II) phthalocyanine. J. Photochem. Photobiol. B Biol.
  67. 38
  68. (2–3), 196–202 (1997)
  69. Nardin et al. (2019) Photosensitizer activation drives apoptosis by interorganellar Ca2+ transfer and superoxide production in bystander cancer cells 8(10) https://doi.org/10.3390/cells8101175
  70. Baier et al. (2006) Singlet oxygen generation by UVA light exposure of endogenous photosensitizers 91(4) (pp. 1452-1459) https://doi.org/10.1529/biophysj.106.082388
  71. Tsay et al. (2007) Singlet oxygen production by peptide-coated quantum dot− photosensitizer conjugates 129(21) (pp. 6865-6871) https://doi.org/10.1021/ja070713i
  72. Wang et al. (2018) Highly efficient photosensitizers with far-red/near-infrared aggregation-induced emission for in vitro and in vivo cancer theranostics 30(39) https://doi.org/10.1002/adma.201802105
  73. Wang et al. (2019) Cancer-cell-activated photodynamic therapy assisted by Cu (II)-based metal–organic framework 13(6) (pp. 6879-6890) https://doi.org/10.1021/acsnano.9b01665
  74. Abrahams et al. (1991) A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks 113(9) (pp. 3606-3607) https://doi.org/10.1021/ja00009a065
  75. Muniappan et al. (2007) Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra (carboxyphenyl) porphyrins and lanthanide-bridging ions 46(14) (pp. 5544-5554) https://doi.org/10.1021/ic0701099
  76. Qin et al. (2016) Derivation and decoration of nets with trigonal-prismatic nodes: a unique route to reticular synthesis of metal–organic frameworks 138(16) (pp. 5299-5307) https://doi.org/10.1021/jacs.6b01093
  77. Huang et al. (2019) Disclosing CO2 activation mechanism by hydroxyl-induced crystalline structure transformation in electrocatalytic process 1(6) (pp. 1656-1668) https://doi.org/10.1016/j.matt.2019.07.003
  78. Wang et al. (2019) Record high cationic dye separation performance for water sanitation using a neutral coordination framework 7(9) (pp. 4751-4758) https://doi.org/10.1039/C8TA12092G
  79. Dong et al. (2019) A highly ruffled distorted nickel-imidazolylporphyrin framework with 1D open nano-sized channels (pp. 14-18) https://doi.org/10.1016/j.inoche.2019.03.034
  80. Suslick et al. (2005) Microporous porphyrin solids 38(4) (pp. 283-291) https://doi.org/10.1021/ar040173j
  81. Cao et al. (2019) Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant 141(37) (pp. 14505-14509) https://doi.org/10.1021/jacs.9b05952
  82. Lu et al. (2014) Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer 136(48) (pp. 16712-16715) https://doi.org/10.1021/ja508679h
  83. Rieter et al. (2006) Nanoscale metal− organic frameworks as potential multimodal contrast enhancing agents 128(28) (pp. 9024-9025) https://doi.org/10.1021/ja0627444
  84. Simon-Yarza et al. (2018) Nanoparticles of metal–organic frameworks: on the road to in vivo efficacy in biomedicine 30(37) https://doi.org/10.1002/adma.201707365
  85. Arun Kumar et al. (2021) Two-dimensional metal organic frameworks for biomedical applications 13(2) https://doi.org/10.1002/wnan.1674
  86. Beg et al. (2017) Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications 22(4) (pp. 625-637) https://doi.org/10.1016/j.drudis.2016.10.001
  87. Jiang et al. (2021) Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration https://doi.org/10.1016/j.nantod.2021.101182
  88. Huang et al. (2021) Curcumin-loaded nanoMOFs@ CMFP: a biological preserving paste with antibacterial properties and long-acting, controllable release https://doi.org/10.1016/j.foodchem.2020.127987
  89. Qiu et al. (2021) Porous nanoparticles with engineered shells release their drug cargo in cancer cells https://doi.org/10.1016/j.ijpharm.2021.121230
  90. Li et al. (2017) Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery 9(22) (pp. 7454-7463) https://doi.org/10.1039/C6NR07593B
  91. Xu et al. (2020) Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe2+ induced ferroptosis in breast cancer cells 8(39) (pp. 9129-9138) https://doi.org/10.1039/D0TB01616K
  92. Della Rocca et al. (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery 44(10) (pp. 957-968) https://doi.org/10.1021/ar200028a
  93. Flügel et al. (2012) Synthetic routes toward MOF nanomorphologies 22(20) (pp. 10119-10133) https://doi.org/10.1039/c2jm15675j
  94. Liu et al. (2016) Nanoscale metal− organic frameworks for combined photodynamic and radiation therapy in cancer treatment (pp. 1-9) https://doi.org/10.1016/j.biomaterials.2016.04.034
  95. Miller et al. (2010) Biodegradable therapeutic MOFs for the delivery of bioactive molecules 46(25) (pp. 4526-4528)
  96. Sharma et al. (2019) Copper-gallic acid nanoscale metal–organic framework for combined drug delivery and photodynamic therapy 2(5) (pp. 2092-2101) https://doi.org/10.1021/acsabm.9b00116
  97. Yang et al. (2016) Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy 10(2) (pp. 2774-2781) https://doi.org/10.1021/acsnano.5b07882
  98. Zhang et al. (2018) Theranostic Mn-porphyrin metal–organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy 10(34) (pp. 28390-28398) https://doi.org/10.1021/acsami.8b09680
  99. Zhang et al. (2015) A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics 51(54) (pp. 10831-10834)
  100. Rabiee et al. (2020) Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy https://doi.org/10.1016/j.biomaterials.2019.119707
  101. Gao et al. (2014) Metal–metalloporphyrin frameworks: a resurging class of functional materials 43(16) (pp. 5841-5866) https://doi.org/10.1039/C4CS00001C
  102. Chen et al. (2021) Porphyrin-based metal–organic frameworks for biomedical applications 60(10) (pp. 5010-5035) https://doi.org/10.1002/anie.201909880
  103. Xie et al. (2020) A singlet oxygen reservoir based on poly-pyridone and porphyrin nanoscale metal–organic framework for cancer therapy (pp. 1187-1202) https://doi.org/10.31635/ccschem.020.202000201
  104. Zhang et al. (2020) A historical perspective on porphyrin-based metal–organic frameworks and their applications https://doi.org/10.1016/j.ccr.2020.213615
  105. Vitillo and Bordiga (2017) Increasing the stability of Mg2(dobpdc) metal–organic framework in air through solvent removal 1(3) (pp. 444-448) https://doi.org/10.1039/C6QM00220J
  106. Shearer et al. (2013) In situ infrared spectroscopic and gravimetric characterisation of the solvent removal and dehydroxylation of the metal organic frameworks UiO-66 and UiO-67 56(9–10) (pp. 770-782) https://doi.org/10.1007/s11244-013-0027-0
  107. Ma et al. (2009) Highly porous and robust 4, 8-connected metal−organic frameworks for hydrogen storage 131(13) (pp. 4610-4612) https://doi.org/10.1021/ja809590n
  108. Tan et al. (2012) Tuning MOF stability and porosity via adding rigid pillars 51(18) (pp. 9649-9654) https://doi.org/10.1021/ic300778m
  109. Hönicke et al. (2018) Balancing mechanical stability and ultrahigh porosity in crystalline framework materials 57(42) (pp. 13780-13783) https://doi.org/10.1002/anie.201808240
  110. Farha et al. (2011) Active-site-accessible, Porphyrinic metal−organic framework materials 133(15) (pp. 5652-5655) https://doi.org/10.1021/ja111042f
  111. Fateeva et al. (2015) Iron and porphyrin metal–organic frameworks: insight into structural diversity, stability, and porosity 15(4) (pp. 1819-1826) https://doi.org/10.1021/cg501855k
  112. Dutta et al. (2018) Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal–organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure 13(18) (pp. 2677-2684) https://doi.org/10.1002/asia.201800815
  113. Fateeva et al. (2011) Series of porous 3-D coordination polymers based on iron (III) and porphyrin derivatives 23(20) (pp. 4641-4651) https://doi.org/10.1021/cm2025747
  114. Mamardashvili et al. (2000) Solubility of alkylporphyrins 5(6) (pp. 762-766) https://doi.org/10.3390/50600762
  115. Deda et al. (2020) Porphyrin derivative nanoformulations for therapy and antiparasitic agents 25(9) https://doi.org/10.3390/molecules25092080
  116. Sobczyński et al. (2013) Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements 68(2) (pp. 100-109)
  117. Kano et al. (2000) Factors influencing self-aggregation tendencies of cationic porphyrins in aqueous solution 122(31) (pp. 7494-7502) https://doi.org/10.1021/ja000738g
  118. Ou et al. (2007) Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation 189(1) (pp. 7-14) https://doi.org/10.1016/j.jphotochem.2006.12.042
  119. dos Santos et al. (2013) Synthesis of functionalized chlorins sterically-prevented from self-aggregation 99(2) (pp. 402-411) https://doi.org/10.1016/j.dyepig.2013.05.024
  120. Toncelli et al. (2013) Controlling the aggregation of 5, 10, 15, 20-tetrakis-(4-sulfonatophenyl)-porphyrin by the use of polycations derived from polyketones bearing charged aromatic groups 98(1) (pp. 51-63) https://doi.org/10.1016/j.dyepig.2013.01.008
  121. Konishi et al. (2003) Improvement of quantum yields for photoinduced energy/electron transfer by isolation of self-aggregative zinc tetraphenyl porphyrin-pendant polymer using cyclodextrin inclusion in aqueous solution 107(41) (pp. 11261-11266) https://doi.org/10.1021/jp0273878
  122. Lv et al. (2017) A base-resistant metalloporphyrin metal–organic framework for C-H bond halogenation 139(1) (pp. 211-217) https://doi.org/10.1021/jacs.6b09463
  123. Zhang et al. (2018) Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy 12(1) (pp. 651-661) https://doi.org/10.1021/acsnano.7b07746
  124. Enakieva et al. (2019) Highly proton-conductive zinc metal–organic framework based on nickel (II) porphyrinylphosphonate 25(45) (pp. 10552-10556) https://doi.org/10.1002/chem.201902212
  125. Le Gac et al. (2019) Hg (II)-mediated Tl (I)-to-Tl (III) oxidation in dynamic Pb (II)/Tl porphyrin complexes 25(3) (pp. 845-853) https://doi.org/10.1002/chem.201804713
  126. ZareKarizi et al. (2018) Pillar-layered MOFs: functionality, interpenetration, flexibility and applications 6(40) (pp. 19288-19329) https://doi.org/10.1039/C8TA03306D
  127. Sakuma et al. (2016) Control of local structures and photophysical properties of zinc porphyrin-based supramolecular assemblies structurally organized by regioselective ligand coordination 18(7) (pp. 5453-5463) https://doi.org/10.1039/C5CP07110K
  128. Barron et al. (2010) A bioinspired synthetic approach for building metal− organic frameworks with accessible metal centers 49(22) (pp. 10217-10219) https://doi.org/10.1021/ic101459j
  129. Lee et al. (2011) Light-harvesting metal–organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs 133(40) (pp. 15858-15861) https://doi.org/10.1021/ja206029a
  130. Xie et al. (2013) Highly efficient C–H oxidative activation by a porous MnIII–porphyrin metal–organic framework under mild conditions 19(42) (pp. 14316-14321) https://doi.org/10.1002/chem.201302025
  131. Mishra et al. (2019) Structural diversity in tetrakis (4-pyridyl) porphyrin supramolecular building blocks 19(6) (pp. 3529-3542) https://doi.org/10.1021/acs.cgd.9b00399
  132. Johnson et al. (2016) A new approach to non-coordinating anions: lewis acid enhancement of porphyrin metal centers in a zwitterionic metal–organic framework 138(32) (pp. 10293-10298) https://doi.org/10.1021/jacs.6b05626
  133. Maares et al. (2019) Alkali phosphonate metal–organic frameworks 25(48) (pp. 11214-11217) https://doi.org/10.1002/chem.201902207
  134. Fang et al. (2019) Electrochemical, spectroelectrochemical, and structural studies of mono-and diphosphorylated zinc porphyrins and their self-assemblies 58(7) (pp. 4665-4678) https://doi.org/10.1021/acs.inorgchem.9b00268
  135. Shmilovits et al. (2004) Coordination polymers of tetra (4-carboxyphenyl) porphyrins sustained by tetrahedral zinc ion linkers 4(3) (pp. 633-638) https://doi.org/10.1021/cg0342009
  136. Diskin-Posner and Goldberg (2001) Porphyrin sieves. Designing open networks of tetra (carboxyphenyl) porphyrins by extended coordination through sodium ion auxiliaries 25(7) (pp. 899-904) https://doi.org/10.1039/b100580b
  137. Kosal et al. (2002) A calcium-bridged porphyrin coordination network 6(06) (pp. 377-381) https://doi.org/10.1142/S1088424602000464
  138. Diskin-Posner et al. (2000) Crystal engineering of metalloporphyrin zeolite analogues 112(7) (pp. 1344-1348) https://doi.org/10.1002/(SICI)1521-3757(20000403)112:7<1344::AID-ANGE1344>3.0.CO;2-8
  139. Diskin-Posner et al. (2000) New effective synthons for supramolecular self-assembly of meso-carboxyphenylporphyrins (pp. 585-586)
  140. Diskin-Posner et al. (2001) Crystal engineering of 2-D and 3-D multiporphyrin architectures—the versatile topologies of tetracarboxyphenylporphyrin-based materials 2001(10) (pp. 2515-2523) https://doi.org/10.1002/1099-0682(200109)2001:10<2515::AID-EJIC2515>3.0.CO;2-0
  141. Shmilovits et al. (2003) Crystal engineering of “porphyrin sieves” based on coordination polymers of Pd-and Pt-tetra (4-carboxyphenyl) porphyrin 3(5) (pp. 855-863) https://doi.org/10.1021/cg034071w
  142. Zou et al. (2012) Five porphyrin-core-dependent metal–organic frameworks and framework-dependent fluorescent properties 14(14) (pp. 4850-4856) https://doi.org/10.1039/c2ce25357g
  143. Chen (2012) Hydrothermal preparation, crystal structure and properties of {[ZnTCPP (EtOH)][Zn (en)]2}n (EtOH)2n with a novel two-dimensional (2-D) Motif 30(2) (pp. 273-276) https://doi.org/10.1002/cjoc.201180485
  144. Amayuelas et al. (2017) Cationic Mn2+/H+ exchange leading a slow solid-state transformation of a 2D porphyrinic network at ambient conditions (pp. 161-167) https://doi.org/10.1016/j.jssc.2017.01.012
  145. George et al. (2006) Porphyrin supramolecular solids assembled with the aid of lanthanide ions 6(12) (pp. 2651-2654) https://doi.org/10.1021/cg060520r
  146. Lipstman and Goldberg (2008) 2D and 3D coordination networks of tetra (carboxyphenyl)-porphyrins with cerium and thulium ions 890(1–3) (pp. 101-106) https://doi.org/10.1016/j.molstruc.2008.03.044
  147. George, S., Goldberg, I.: Crystal structure of catena-tris (5, 10, 15, 20-(4-carboxylatophenyl)-porphyrin)-aqua-tetradysprosium-trizinc solvate, (C
  148. 48
  149. H
  150. 24
  151. N
  152. 4
  153. O
  154. 8
  155. Zn)
  156. 3
  157. Dy4 (H
  158. 2
  159. O)·(solvent)
  160. x
  161. . Z. Krist.-New Cryst. St.
  162. 226
  163. (3),411–413 (2011)
  164. Rhauderwiek et al. (2017) Co-ligand dependent formation and phase transformation of four porphyrin-based cerium metal–organic frameworks 17(6) (pp. 3462-3474) https://doi.org/10.1021/acs.cgd.7b00450
  165. Choi et al. (2009) Highly tunable metal–organic frameworks with open metal centers 11(4) (pp. 553-555) https://doi.org/10.1039/B819707P
  166. Makiura et al. (2014) Porphyrin-based coordination polymer composed of layered pillarless two-dimensional networks 43(7) (pp. 1161-1163) https://doi.org/10.1246/cl.140275
  167. Gallagher et al. (2016) Dioxygen binding at a four-coordinate cobaltous porphyrin site in a metal–organic framework: structural, EPR, and O2 adsorption analysis 3(4) (pp. 536-540) https://doi.org/10.1039/C5QI00275C
  168. Anderson et al. (2014) A five-coordinate heme dioxygen adduct isolated within a metal–organic framework 136(47) (pp. 16489-16492) https://doi.org/10.1021/ja5103103
  169. Gallagher et al. (2017) CO binding at a four-coordinate cobaltous porphyrin site in a metal–organic framework: structural, EPR, and Gas Adsorption Analysis 56(8) (pp. 4654-4661) https://doi.org/10.1021/acs.inorgchem.7b00292
  170. Dolgopolova et al. (2015) A bio-inspired approach for chromophore communication: ligand-to-ligand and host-to-guest energy transfer in hybrid crystalline scaffolds 54(46) (pp. 13639-13643) https://doi.org/10.1002/anie.201507400
  171. Park et al. (2017) Efficient energy transfer (EnT) in pyrene-and porphyrin-based mixed-ligand metal–organic frameworks 9(44) (pp. 38670-38677) https://doi.org/10.1021/acsami.7b14135
  172. Yang et al. (2019) Hierarchical hybrid metal–organic frameworks: tuning the visible/near-infrared optical properties by a combination of porphyrin and its isomer units 58(7) (pp. 4647-4656) https://doi.org/10.1021/acs.inorgchem.9b00251
  173. Lu et al. (2018) Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy 2(8) (pp. 600-610) https://doi.org/10.1038/s41551-018-0203-4
  174. Xu et al. (2018) Isolated π-interaction sites in mesoporous MOF backbone for repetitive and reversible dynamics in water 11(1) (pp. 973-981) https://doi.org/10.1021/acsami.8b19211
  175. Tripuramallu et al. (2019) Location controlled symmetry reduction: paradigm of an open metalloporphyrin framework based on the tetracarboxy porphyrin linker 21(35) (pp. 5216-5221) https://doi.org/10.1039/C9CE01107B
  176. Rönfeldt et al. (2020) Scandium metal–organic frameworks containing tetracarboxylate linker molecules: synthesis, structural relationships, and properties 20(7) (pp. 4686-4694) https://doi.org/10.1021/acs.cgd.0c00478
  177. Barron et al. (2009) Highly tunable heterometallic frameworks constructed from paddle-wheel units and metalloporphyrins 9(4) (pp. 1960-1965) https://doi.org/10.1021/cg801267m
  178. Martinez-Bulit et al. (2019) Solvent and steric influences on rotational dynamics in porphyrinic metal–organic frameworks with mechanically interlocked pillars 19(10) (pp. 5679-5685) https://doi.org/10.1021/acs.cgd.9b00669
  179. Zhang et al. (2018) Pore-environment engineering with multiple metal sites in rare-earth porphyrinic metal–organic frameworks 57(18) (pp. 5095-5099) https://doi.org/10.1002/anie.201802661
  180. Lipstman et al. (2007) Framework coordination polymers of tetra (4-carboxyphenyl) porphyrin and lanthanide ions in crystalline solids (pp. 3273-3281) https://doi.org/10.1039/b703698a
  181. Choi et al. (2009) Pillared porphyrin homologous series: intergrowth in metal− organic frameworks 48(2) (pp. 426-428) https://doi.org/10.1021/ic801677y
  182. Ding et al. (2017) Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent 139(27) (pp. 9136-9139) https://doi.org/10.1021/jacs.7b04829
  183. Burnett et al. (2011) Stepwise synthesis of metal–organic frameworks: replacement of structural organic linkers 133(26) (pp. 9984-9987) https://doi.org/10.1021/ja201911v
  184. Planes et al. (2020) Incorporation of clathrochelate-based metalloligands in metal–organic frameworks by solvent-assisted ligand exchange 20(3) (pp. 1394-1399) https://doi.org/10.1021/acs.cgd.9b01697
  185. Liu et al. (2020) A series of highly stable porphyrinic metal–organic frameworks based on iron–oxo chain clusters: design, synthesis and biomimetic catalysis 8(17) (pp. 8376-8382) https://doi.org/10.1039/D0TA02033H
  186. Nefedov et al. (2019) Coordination self-assembly through weak interactions in meso-dialkoxyphosphoryl-substituted zinc porphyrinates 48(16) (pp. 5372-5383) https://doi.org/10.1039/C9DT00706G
  187. Mitrofanov et al. (2019) Facile synthesis and self-assembly of zinc (2-Diethoxyphosphorylethynyl) porphyrins 2019(10) (pp. 1313-1328) https://doi.org/10.1002/ejic.201900004
  188. Wang et al. (2016) Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance 138(3) (pp. 914-919) https://doi.org/10.1021/jacs.5b10881
  189. Lu et al. (2015) A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers 137(24) (pp. 7600-7603) https://doi.org/10.1021/jacs.5b04069
  190. Feng et al. (2019) Elucidating J-aggregation effect in boosting singlet-oxygen evolution using zirconium-porphyrin frameworks: a comprehensive structural, catalytic, and spectroscopic study 11(48) (pp. 45118-45125) https://doi.org/10.1021/acsami.9b17569
  191. He et al. (2019) A versatile metalloporphyrinic framework platform for highly efficient bioinspired, photo-and asymmetric catalysis 58(1) (pp. 168-172) https://doi.org/10.1002/anie.201810294
  192. Abdulaeva et al. (2019) Imidazoporphyrins as supramolecular tectons: synthesis and self-assembly of zinc 2-(4-pyridyl)-1 H-imidazo [4, 5-b] porphyrinate 21(9) (pp. 1488-1498) https://doi.org/10.1039/C8CE01992D
  193. Dhamija et al. (2019) Molecule to supramolecule: chirality induction, inversion, and amplification in a Mg (II) porphyrin Dimer templated by Chiral Diols 59(1) (pp. 801-809) https://doi.org/10.1021/acs.inorgchem.9b03062
  194. Battistin et al. (2020) Orthogonal coordination chemistry of PTA toward Ru (II) and Zn (II)(PTA= 1, 3, 5-Triaza-7-phosphaadamantane) for the construction of 1D and 2D metal-mediated porphyrin networks 59(6) (pp. 4068-4079) https://doi.org/10.1021/acs.inorgchem.0c00080
  195. Niu et al. (2019) Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal–organic framework with a porphyrinic skeleton 55(33) (pp. 4873-4876)
  196. Wan et al. (2018) ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor (pp. 51-62) https://doi.org/10.1016/j.biomaterials.2018.09.004
  197. Zhou et al. (2019) Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy 4(5) (pp. 1185-1193) https://doi.org/10.1039/C9NH00021F
  198. Luo et al. (2019) Light-Induced redox-responsive smart drug delivery system by using selenium-containing polymer@ MOF shell/core nanocomposite 8(15) https://doi.org/10.1002/adhm.201900406
  199. Chun et al. (2020) PCN-223 as a drug carrier for potential treatment of colorectal cancer (pp. 290-296) https://doi.org/10.1016/j.jiec.2020.01.010
  200. Shahriari et al. (2019) Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer https://doi.org/10.1016/j.ijpharm.2019.118835
  201. Bagheri et al. (2020) Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer https://doi.org/10.1016/j.lfs.2020.118369
  202. Awwad and Angkawinitwong (2018) Overview of antibody drug delivery 10(3) https://doi.org/10.3390/pharmaceutics10030083
  203. Araste et al. (2018) Peptide-based targeted therapeutics: focus on cancer treatment (pp. 141-162) https://doi.org/10.1016/j.jconrel.2018.11.004
  204. Alibolandi et al. (2016) Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo (pp. 45-56) https://doi.org/10.1016/j.jconrel.2016.09.012
  205. Zhang et al. (2019) DNA-functionalized metal–organic framework: cell imaging, targeting drug delivery and photodynamic therapy 58(10) (pp. 6593-6596) https://doi.org/10.1021/acs.inorgchem.9b00734
  206. Lin et al. (2016) A porphyrin-based metal–organic framework as a pH-responsive drug carrier (pp. 307-312) https://doi.org/10.1016/j.jssc.2016.02.040
  207. Wang et al. (2019) The application of methylprednisolone nanoscale zirconium-porphyrin metal–organic framework (MPS-NPMOF) in the treatment of photoreceptor degeneration https://doi.org/10.2147/IJN.S225992
  208. Li et al. (2017) Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy 11(7) (pp. 7006-7018) https://doi.org/10.1021/acsnano.7b02533
  209. Zhao et al. (2019) Postsynthetic ligand exchange of metal–organic framework for photodynamic therapy 11(8) (pp. 7884-7892) https://doi.org/10.1021/acsami.9b00740
  210. He et al. (2020) Solvent-assisted self-assembly of a metal–organic framework based biocatalyst for cascade reaction driven photodynamic therapy 142(14) (pp. 6822-6832) https://doi.org/10.1021/jacs.0c02497
  211. Li et al. (2020) Controllable synthesis of Ni/Co-TCPP MOFs with different morphologies and their application in electrochemical detection of glucose 167(12) https://doi.org/10.1149/1945-7111/abac2a
  212. Zhao et al. (2020) Metal–organic frameworks with enhanced photodynamic therapy: synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation 12(21) (pp. 23697-23706) https://doi.org/10.1021/acsami.0c04363
  213. Wang et al. (2019) Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy 11(38) (pp. 35228-35237) https://doi.org/10.1021/acsami.9b11238
  214. Li et al. (2017) Heterodimers made of upconversion nanoparticles and metal–organic frameworks 139(39) (pp. 13804-13810) https://doi.org/10.1021/jacs.7b07302
  215. Zhou et al. (2018) One-pot synthetic approach toward porphyrinatozinc and heavy-atom involved Zr-NMOF and its application in photodynamic therapy 57(6) (pp. 3169-3176) https://doi.org/10.1021/acs.inorgchem.7b03204
  216. Li et al. (2018) A biomimetic theranostic O2-meter for cancer targeted photodynamic therapy and phosphorescence imaging (pp. 1-12) https://doi.org/10.1016/j.biomaterials.2017.10.021
  217. Liu et al. (2019) Nanozymes-engineered metal–organic frameworks for catalytic cascades-enhanced synergistic cancer therapy 19(8) (pp. 5674-5682) https://doi.org/10.1021/acs.nanolett.9b02253
  218. Zheng et al. (2018) Nanoscale mixed-component metal–organic frameworks with photosensitizer spatial-arrangement-dependent photochemistry for multimodal-imaging-guided photothermal therapy 30(19) (pp. 6867-6876) https://doi.org/10.1021/acs.chemmater.8b03043
  219. Hollingworth et al. (2000) The diagnostic and therapeutic impact of MRI: an observational multi-centre study 55(11) (pp. 825-831) https://doi.org/10.1053/crad.2000.0546
  220. Lee et al. (2004) Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks 231(2) (pp. 393-398) https://doi.org/10.1148/radiol.2312030767
  221. De Ruysscher et al. (2012) PET scans in radiotherapy planning of lung cancer 75(2) (pp. 141-145) https://doi.org/10.1016/j.lungcan.2011.07.018
  222. Shung (2011) Diagnostic ultrasound: past, present, and future 31(6) (pp. 371-374) https://doi.org/10.5405/jmbe.871
  223. Zhang et al. (2019) Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy 11(43) (pp. 39594-39602) https://doi.org/10.1021/acsami.9b14084
  224. Liu et al. (2017) Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal–organic framework 13(17) https://doi.org/10.1002/smll.201603459
  225. Liu et al. (2019) In situ polymerization on nanoscale metal–organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery https://doi.org/10.1016/j.biomaterials.2019.119365
  226. Xia et al. (2020) Multi-modal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework 8(7) https://doi.org/10.1093/nsr/nwaa221
  227. Liu et al. (2018) Hypoxia-triggered nanoscale metal–organic frameworks for enhanced anticancer activity 10(29) (pp. 24638-24647) https://doi.org/10.1021/acsami.8b07570
  228. He et al. (2019) Mn–porphyrin-based metal–organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy 11(45) (pp. 41946-41956) https://doi.org/10.1021/acsami.9b15083
  229. Wan et al. (2019) A Mn (III)-sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics 13(6) (pp. 6561-6571) https://doi.org/10.1021/acsnano.9b00300
  230. Meng et al. (2018) Aptamer-functionalized nanoscale metal–organic frameworks for targeted photodynamic therapy 8(16) https://doi.org/10.7150/thno.26768
  231. Li et al. (2017) Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy (pp. 149-161) https://doi.org/10.1016/j.biomaterials.2017.07.026
  232. Gao et al. (2020) A CD44-targeted Cu (ii) delivery 2D nanoplatform for sensitized disulfiram chemotherapy to triple-negative breast cancer 12(15) (pp. 8139-8146) https://doi.org/10.1039/D0NR00434K
  233. Hang et al. (2021) Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal–organic frameworks for photodynamic therapy (pp. 660-666) https://doi.org/10.1007/s12274-020-3093-1
  234. Zhang et al. (2018) Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with cuii as the active center 130(18) (pp. 4985-4990) https://doi.org/10.1002/ange.201710800
  235. Shao et al. (2020) Engineering of upconverted metal–organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors 142(8) (pp. 3939-3946) https://doi.org/10.1021/jacs.9b12788
  236. Han et al. (2020) Enhanced photocatalytic activity and photothermal effects of cu-doped metal–organic frameworks for rapid treatment of bacteria-infected wounds https://doi.org/10.1016/j.apcatb.2019.118248
  237. Qin et al. (2020) Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy 49(48) (pp. 17772-17778) https://doi.org/10.1039/D0DT03031G
  238. Ni et al. (2019) Nanoscale metal–organic framework mediates radical therapy to enhance cancer immunotherapy 5(7) (pp. 1892-1913) https://doi.org/10.1016/j.chempr.2019.05.013
  239. Wang et al. (2019) Nanoscaled porphyrinic metal–organic framework for photodynamic/photothermal therapy of tumor 40(16–17) (pp. 2204-2210) https://doi.org/10.1002/elps.201900005
  240. Yin et al. (2019) Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@ metal–organic frameworks for enhanced photodynamic therapy 29(25) https://doi.org/10.1002/adfm.201901417
  241. Wang et al. (2018) Porphyrinic metal–organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s Amyloid-β peptide 10(43) (pp. 36615-36621) https://doi.org/10.1021/acsami.8b15452
  242. Wang et al. (2019) Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy 58(29) (pp. 9846-9850) https://doi.org/10.1002/anie.201903981
  243. Leng, X., Huang, H., Wang, W., Sai, N., You, L., Yin, X., Ni, J.: Zirconium-Porphyrin PCN-222: pH-responsive Controlled Anticancer Drug Oridonin. Evid.-Based Complement. Alternat. Med.
  244. 2018
  245. , 3249023 (2018)
  246. Lin et al. (2019) A photodynamic system based on endogenous bioluminescence for in vitro anticancer studies 645(18–19) (pp. 1161-1164) https://doi.org/10.1002/zaac.201900144
  247. Wang et al. (2020) Fusiform-like copper (II)-based metal–organic framework through relief hypoxia and GSH-depletion co-enhanced starvation and chemodynamic synergetic cancer therapy 12(15) (pp. 17254-17267) https://doi.org/10.1021/acsami.0c01539
  248. Ning et al. (2018) Imparting designer biorecognition functionality to metal–organic frameworks by a DNA-mediated surface engineering strategy 14(11) https://doi.org/10.1002/smll.201703812
  249. Zheng et al. (2020) Integration of metal–organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy https://doi.org/10.1016/j.biomaterials.2020.119792
  250. Schlachter et al. (2021) Porphyrin-containing MOFs and COFs as heterogeneous photosensitizers for singlet oxygen-based antimicrobial nanodevices 13(23) (pp. 26651-26672) https://doi.org/10.1021/acsami.1c05234
  251. Bi et al. (2022) Development of 3D porous Ag+ decorated PCN-222@ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U (VI) from seawater https://doi.org/10.1016/j.seppur.2021.119900
  252. Chen et al. (2020) Titanium incorporation into Zr-porphyrinic metal–organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens 16(7) https://doi.org/10.1002/smll.201906240
  253. Xu et al. (2021) Manganese porphyrin-based metal–organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors 11(4) https://doi.org/10.7150/thno.45511
  254. Wang et al. (2019) DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins 141(6) (pp. 2215-2219) https://doi.org/10.1021/jacs.8b12705
  255. Cheng et al. (2019) Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy https://doi.org/10.1016/j.biomaterials.2019.119500
  256. Wang et al. (2019) Renal-clearable porphyrinic metal–organic framework nanodots for enhanced photodynamic therapy 13(8) (pp. 9206-9217) https://doi.org/10.1021/acsnano.9b03531
  257. Abdelhamid and Mathew (2022) Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review https://doi.org/10.1016/j.ccr.2021.214263
  258. Chen et al. (2021) Vancomycin-functionalized porphyrinic metal–organic framework PCN-224 with enhanced antibacterial activity against Staphylococcus aureus 16(15) (pp. 2022-2026) https://doi.org/10.1002/asia.202100546
  259. Luo et al. (2019) Dual metal–organic framework heterointerface 5(9) (pp. 1591-1601) https://doi.org/10.1021/acscentsci.9b00639
  260. Luo et al. (2021) Enhanced photocatalytic and photothermal properties of ecofriendly metal–organic framework heterojunction for rapid sterilization https://doi.org/10.1016/j.cej.2020.126730
  261. Liu et al. (2021) Effect of topology on photodynamic sterilization of porphyrinic metal–organic frameworks 27(39) (pp. 10151-10159) https://doi.org/10.1002/chem.202100920
  262. Han et al. (2021) Photothermy-strengthened photocatalytic activity of polydopamine-modified metal–organic frameworks for rapid therapy of bacteria-infected wounds (pp. 83-95) https://doi.org/10.1016/j.jmst.2020.05.055
  263. Yu et al. (2021) Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis https://doi.org/10.1016/j.cej.2021.133279
  264. Zhang et al. (2020) Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination https://doi.org/10.1016/j.biomaterials.2020.120029
  265. Xu et al. (2021) Plasmon induced dual excited synergistic effect in Au/metal–organic frameworks composite for enhanced antibacterial therapy 9(46) (pp. 9606-9614) https://doi.org/10.1039/D1TB02141A
  266. Tang et al. (2019) Preparation and characterization of tebuconazole metal–organic framework-based microcapsules with dual-microbicidal activity (pp. 225-232) https://doi.org/10.1016/j.cej.2018.11.147
  267. Min et al. (2021) Electrospun pullulan/PVA nanofibers integrated with thymol-loaded porphyrin metal− organic framework for antibacterial food packaging https://doi.org/10.1016/j.carbpol.2021.118391
  268. Zhang et al. (2021) The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods 9(38) (pp. 8048-8055) https://doi.org/10.1039/D1TB01649K
  269. Wang et al. (2021) Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving https://doi.org/10.1016/j.memsci.2021.119397
  270. Zhang et al. (2021) Integrating porphyrinic metal–organic frameworks in nanofibrous carrier for photodynamic antimicrobial application 13(22) https://doi.org/10.3390/polym13223942
  271. Nie et al. (2021) PCN-224 nanoparticle/polyacrylonitrile nanofiber membrane for light-driven bacterial inactivation 11(12) https://doi.org/10.3390/nano11123162
  272. Tang et al. (2021) Preparation of a porphyrin metal–organic framework with desirable photodynamic antimicrobial activity for sustainable plant disease management 69(8) (pp. 2382-2391) https://doi.org/10.1021/acs.jafc.0c06487
  273. Ximing et al. (2017) Preparation of spherical metal–organic frameworks encapsulating Ag nanoparticles and study on its antibacterial activity (pp. 698-707) https://doi.org/10.1016/j.msec.2017.07.027
  274. Mao et al. (2021) Rugby-ball like Ag modified zirconium porphyrin metal–organic frameworks nanohybrid for antimicrobial activity: synergistic effect for significantly enhancing photoactivation capacity https://doi.org/10.1016/j.colsurfa.2020.125888
  275. Deng et al. (2019) Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms 29(30) https://doi.org/10.1002/adfm.201903018
  276. Lan et al. (2017) Nanoscale metal–organic layers for deeply penetrating X-ray-induced photodynamic therapy 129(40) (pp. 12270-12274) https://doi.org/10.1002/ange.201704828
  277. Teo et al. (2021) Facile preparation of antibacterial MOF-fabric systems for functional protective wearables 2(4) (pp. 567-578) https://doi.org/10.1002/smm2.1046