10.1007/s40089-015-0160-9

Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor

  1. Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, IN
  2. Department of Chemistry, Osmania University, Hyderabad, 500 007, IN
Cover Image

Published in Issue 2015-09-21

How to Cite

Male, U., Srinivasan, P., & Singu, B. S. (2015). Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor. International Nano Letters, 5(4 (December 2015). https://doi.org/10.1007/s40089-015-0160-9

HTML views: 9

PDF views: 56

Abstract

Abstract The aim of this work is to improve the supercapacitor performance of polyaniline (PANI). Polyaniline nano fibres are incorporated into graphene oxide (GO) layers by interfacial polymerization pathway, wherein PANI fibres are intercalated into GO layers and also cover the GO. PANI–GO hybrid composite is obtained in semi-crystalline form with good conductivity (1.7 S cm −1 ). The specific capacitance for PANI–GO (365 F g −1 ) is found to be higher than PANI (280 F g −1 ). At the energy density of 15 W h kg −1 , the power density of PANI–GO (632 W kg −1 ) is higher than PANI (283 W kg −1 ).

Keywords

  • Polyaniline–graphene oxide,
  • Supercapacitor,
  • Interfacial polymerization,
  • Morphology

References

  1. Wang et al. (2012) A review of electrode materials for electrochemical supercapacitors (pp. 797-828) https://doi.org/10.1039/C1CS15060J
  2. Uppugalla et al. (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application (pp. 242-248) https://doi.org/10.1016/j.electacta.2014.09.047
  3. Geniès et al. (1990) Polyaniline: a historical survey (pp. 139-182) https://doi.org/10.1016/0379-6779(90)90050-U
  4. Dhand et al. (2011) Recent advances in polyaniline based biosensors (pp. 2811-2821) https://doi.org/10.1016/j.bios.2010.10.017
  5. Snook et al. (2011) Conducting-polymer-based supercapacitor devices and electrodes (pp. 1-12) https://doi.org/10.1016/j.jpowsour.2010.06.084
  6. Singu et al. (2014) Use of surfactant in aniline polymerization with TiO2 to PANI-TiO2 for supercapacitor performance (pp. 1995-2003) https://doi.org/10.1007/s10008-014-2444-9
  7. Wang et al. (2010) Effect of graphene oxide on the properties of its composite with polyaniline (pp. 821-828) https://doi.org/10.1021/am900815k
  8. Wang et al. (2009) Graphene oxide doped polyaniline for supercapacitors (pp. 1158-1161) https://doi.org/10.1016/j.elecom.2009.03.036
  9. Yan et al. (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers (pp. 2521-2529) https://doi.org/10.1021/am100293r
  10. Wei et al. (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage (pp. 1820-1831) https://doi.org/10.1016/j.polymer.2013.01.051
  11. Zhu et al. (2012) Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage (pp. 5953-5964) https://doi.org/10.1016/j.polymer.2012.10.002
  12. Liu et al. (2012) Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material (pp. 13619-13624) https://doi.org/10.1039/c2jm32479b
  13. Shulga et al. (2013) Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets (pp. 195-201) https://doi.org/10.1016/j.jpowsour.2012.09.105
  14. Luo et al. (2013) Polyaniline uniformly coated on graphene oxide sheets as supercapacitor material with improved capacitive properties (pp. 572-579) https://doi.org/10.1016/j.matchemphys.2013.01.059
  15. Zhang et al. (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor (pp. 95-100) https://doi.org/10.1016/j.electacta.2012.11.035
  16. Xu et al. (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage (pp. 5019-5026) https://doi.org/10.1021/nn1006539
  17. Xu et al. (2012) Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes (pp. 14390-14398) https://doi.org/10.1021/ie301734f
  18. Xu et al. (2014) Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors (pp. 200-209) https://doi.org/10.1021/am404799a
  19. Gui et al. (2014) Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor (pp. 172-177) https://doi.org/10.1016/j.apsusc.2014.04.007
  20. Khomenko et al. (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations (pp. 2499-2506) https://doi.org/10.1016/j.electacta.2004.10.078
  21. Xu et al. (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance (pp. 11253-11258) https://doi.org/10.1039/c1jm11275a
  22. Huang et al. (2002) Polyaniline nanofibers: facile synthesis and chemical sensors (pp. 314-315) https://doi.org/10.1021/ja028371y
  23. Huang and Kaner (2004) A general chemical route to polyaniline nanofibers (pp. 851-855) https://doi.org/10.1021/ja0371754
  24. Zhang and Zhao (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes (pp. 5420-5426) https://doi.org/10.1021/jp211474e
  25. Lindfors and Latonen (2014) Improved charging/discharging behavior of electropolymerized nanostructured composite films of polyaniline and electrochemically reduced graphene oxide (pp. 122-131) https://doi.org/10.1016/j.carbon.2013.11.074
  26. Zhou et al. (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors (pp. 574-580) https://doi.org/10.1007/s10008-004-0594-x
  27. Male, U., Singu, B.S., Srinivasan, P.: Aqueous, interfacial, and electrochemical polymerization pathways of aniline with thiophene: nano size materials for supercapacitor. J. Appl. Polym. Sci.
  28. 132
  29. , n/a-n/a (2015)
  30. Xu et al. (2009) Synthesis and characterization of nanostructured polypyrroles: morphology-dependent electrochemical responses and chemical deposition of Au nanoparticles (pp. 2624-2629) https://doi.org/10.1016/j.polymer.2009.03.005