Published in Issue 2014-10-07
How to Cite
Mishra, P. C., Mukherjee, S., Nayak, S. K., & Panda, A. (2014). A brief review on viscosity of nanofluids. International Nano Letters, 4(4 (December 2014). https://doi.org/10.1007/s40089-014-0126-3
HTML views: 15
PDF views: 49
Abstract
Abstract Since the past decade, rapid development in nanotechnology has produced several aspects for the scientists and technologists to look into. Nanofluid is one of the incredible outcomes of such advancement. Nanofluids (colloidal suspensions of metallic and nonmetallic nanoparticles in conventional base fluids) are best known for their remarkable change to enhanced heat transfer abilities. Earlier research work has already acutely focused on thermal conductivity of nanofluids. However, viscosity is another important property that needs the same attention due to its very crucial impact on heat transfer. Therefore, viscosity of nanofluids should be thoroughly investigated before use for practical heat transfer applications. In this contribution, a brief review on theoretical models is presented precisely. Furthermore, the effects of nanoparticles’ shape and size, temperature, volume concentration, pH, etc. are organized together and reviewed.Keywords
- Nanofluids,
- Nanoparticles,
- Viscosity,
- Theoretical studies,
- Experimental studies
References
- Choi et al. (1995) Enhancing thermal conductivity of fluids with nanoparticles (pp. 99-105) ASME
- Mahbubul et al. (2012) Latest developments on the viscosity of nanofluids 55(4) (pp. 874-885) https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021
- Einstein (1906) Eineneuebestimmung der moleküldimensionen 324(2) (pp. 289-306) https://doi.org/10.1002/andp.19063240204
- Mooney (1951) The viscosity of a concentrated suspension of spherical particles 6(2) (pp. 162-170) https://doi.org/10.1016/0095-8522(51)90036-0
- Krieger and Thomas (1957) A mechanism for non-Newtonian flow in suspensions of rigid spheres 3(1) (pp. 137-152) https://doi.org/10.1122/1.548848
- Nielsen (1970) Generalized equation for the elastic moduli of composite materials 41(11) (pp. 4626-4627) https://doi.org/10.1063/1.1658506
- Batchelor (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles 83(01) (pp. 97-117) https://doi.org/10.1017/S0022112077001062
- Brinkman (1952) The viscosity of concentrated suspensions and solutions 20(4) https://doi.org/10.1063/1.1700493
- Frankel and Acrivos (1967) On the viscosity of a concentrated suspension of solid spheres 22(6) (pp. 847-853) https://doi.org/10.1016/0009-2509(67)80149-0
- Lundgren (1972) Slow flow through stationary random beds and suspensions of spheres 51(02) (pp. 273-299) https://doi.org/10.1017/S002211207200120X
- Graham (1981) On the viscosity of suspensions of solid spheres 37(3-4) (pp. 275-286) https://doi.org/10.1007/BF00951252
- Kitano et al. (1981) An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers 20(2) (pp. 207-209) https://doi.org/10.1007/BF01513064
- Bicerano et al. (1999) Model for the viscosity of particle dispersions 39(4) (pp. 561-642) https://doi.org/10.1081/MC-100101428
- Cheng and Law (2003) Exponential formula for computing effective viscosity 129(1) (pp. 156-160) https://doi.org/10.1016/S0032-5910(02)00274-7
- Tseng and Chen (2003) Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions 347(1) (pp. 145-153) https://doi.org/10.1016/S0921-5093(02)00562-2
- Avsec and Oblak (2007) The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics 50(21) (pp. 4331-4341) https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064
- Yu and Choi (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model 5(1-2) (pp. 167-171) https://doi.org/10.1023/A:1024438603801
- Chen et al. (2007) Rheological behaviour of nanofluids 9(10) https://doi.org/10.1088/1367-2630/9/10/367
- Masoumi et al. (2009) A new model for calculating the effective viscosity of nanofluids 42(5) https://doi.org/10.1088/0022-3727/42/5/055501
- Pak and Cho (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles 11(2) (pp. 151-170) https://doi.org/10.1080/08916159808946559
- Kulkarni et al. (2006) Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid) 6(4) (pp. 1150-1154) https://doi.org/10.1166/jnn.2006.187
- Nguyen (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon 28(6) (pp. 1492-1506) https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
- Namburu (2009) Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties 48(2) (pp. 290-302) https://doi.org/10.1016/j.ijthermalsci.2008.01.001
- Chandrasekar et al. (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid 34(2) (pp. 210-216) https://doi.org/10.1016/j.expthermflusci.2009.10.022
- Abu-Nada (2009) Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection 30(4) (pp. 679-690) https://doi.org/10.1016/j.ijheatfluidflow.2009.02.003
- Masoud Hosseini et al. (2010) A new dimensionless group model for determining the viscosity of nanofluids 100(3) (pp. 873-877) https://doi.org/10.1007/s10973-010-0721-0
- Garg (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid 103(7) https://doi.org/10.1063/1.2902483
- Murshed et al. (2008) Thermophysical and electrokinetic properties of nanofluids–a critical review 28(17) (pp. 2109-2125) https://doi.org/10.1016/j.applthermaleng.2008.01.005
- Nguyen (2008) Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? 47(2) (pp. 103-111) https://doi.org/10.1016/j.ijthermalsci.2007.01.033
- He (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe 50(11) (pp. 2272-2281) https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024
- Namburu (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids 2(3) (pp. 67-71) https://doi.org/10.1049/mnl:20070037
- Chevalier et al. (2007) Rheological properties of nanofluids flowing through microchannels 91(23) https://doi.org/10.1063/1.2821117
- Pastoriza-Gallego (2011) CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity 300(1) (pp. 188-196) https://doi.org/10.1016/j.fluid.2010.10.015
- Lu and Fan (2008) Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method 32(4) (pp. 282-289) https://doi.org/10.1016/j.enganabound.2007.10.006
- Anoop et al. (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region 52(9) (pp. 2189-2195) https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063
- Agarwal et al. (2013) Synthesis and characterization of kerosene–alumina nanofluids 60(1) (pp. 275-284) https://doi.org/10.1016/j.applthermaleng.2013.06.049
- Prasher (2006) Measurements of nanofluid viscosity and its implications for thermal applications 89(13) https://doi.org/10.1063/1.2356113
- Timofeeva (2011) Nanofluids for heat transfer: an engineering approach 6(1) (pp. 1-7) https://doi.org/10.1186/1556-276X-6-182
- Timofeeva et al. (2009) Particle shape effects on thermophysical properties of alumina nanofluids 106(1) https://doi.org/10.1063/1.3155999
- Ferrouillat (2013) Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO < sub > 2 and ZnO nanofluids 51(1) (pp. 839-885) https://doi.org/10.1016/j.applthermaleng.2012.10.020
- Das et al. (2003) Pool boiling characteristics of nano-fluids 46(5) (pp. 851-862) https://doi.org/10.1016/S0017-9310(02)00348-4
- Putra et al. (2003) DasNatural convection of nano-fluids 39(8–9) (pp. 775-784) https://doi.org/10.1007/s00231-002-0382-z
- Weerapun and Somchai (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2 water nanofluids 33(4) (pp. 706-714) https://doi.org/10.1016/j.expthermflusci.2009.01.005
- Schmidt (2008) Experimental investigation of nanofluid shear and longitudinal viscosities 92(24) https://doi.org/10.1063/1.2945799
- Ding (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) 49(1) (pp. 240-250) https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
- Naina (2012) Viscosity and specific volume of TiO2/water nanofluid 1(2) (pp. 161-165) https://doi.org/10.1166/jon.2012.1021
- Lee (2011) Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications 54(1) (pp. 433-438) https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026
- Tseng and Lin (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions 355(1) (pp. 186-192) https://doi.org/10.1016/S0921-5093(03)00063-7
- Hojjat (2011) Rheological characteristics of non-Newtonian nanofluids: experimental investigation 38(2) (pp. 144-148) https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019
- Goharshadi (2009) Nanofluids for heat transfer enhancement-a review 1(1) (pp. 1-33)
- Chen (2009) Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology 7(2) (pp. 151-157) https://doi.org/10.1016/j.partic.2009.01.005
- Duan et al. (2011) Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids 6(1) (pp. 1-5) https://doi.org/10.1186/1556-276X-6-248
- Thomas and Sobhan (2011) A review of experimental investigations on thermal phenomena in nanofluids 6(1) (pp. 1-21) https://doi.org/10.1186/1556-276X-6-377
- Andrade (1934) LVIII.A theory of the viscosity of liquids.—Part II 17(113) (pp. 698-732) https://doi.org/10.1080/14786443409462427
- Meschede and Helmut (2002) Springer
- Fulcher (1925) Analysis of recent measurements of the viscosity of glasses 8(6) (pp. 339-355) https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
- Goharshadi and Mahboobeh (2012) Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles 38(3) (pp. 1771-1777) https://doi.org/10.1016/j.ceramint.2011.09.063
- Syam Sundar et al. (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications (pp. 7-14) https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014
- Chen et al. (2007) Rheological behaviour of nanofluids 9(10) https://doi.org/10.1088/1367-2630/9/10/367
- Xian-Ju and Li (2009) Influence of pH on nanofluids’ viscosity and thermal conductivity 26(5) https://doi.org/10.1088/0256-307X/26/5/056601
- Jia-Fei (2009) Dependence of nanofluid viscosity on particle size and pH value 26(6) https://doi.org/10.1088/0256-307X/26/6/066202
- Kumar et al. (2012) Review on nanofluid theoretical viscosity models 1(2) (pp. 128-134)
- Masuda (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles 7(4) (pp. 227-233)
- Wang et al. (1999) Thermal conductivity of nanoparticle-fluid mixture 13(4) (pp. 474-480) https://doi.org/10.2514/2.6486
- Namburu (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture 32(2) (pp. 397-402) https://doi.org/10.1016/j.expthermflusci.2007.05.001
- Abareshi (2011) Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids 163(1) (pp. 27-32) https://doi.org/10.1016/j.molliq.2011.07.007
- Hung and Wen-Chieh (2012) Chitosan for suspension performance and viscosity of MWCNTs 3(5) (pp. 347-353)
- Li et al. (2006) Measurement of the viscosity of dilute magnetic fluids 27(1) (pp. 103-113) https://doi.org/10.1007/s10765-006-0015-8
- Drzazga (2013) Influence of nonionic surfactant addition on drag reduction of water based nanofluid in a small diameter pipe 21(1) (pp. 104-108) https://doi.org/10.1016/S1004-9541(13)60447-4
10.1007/s40089-014-0126-3