Hydrothermal synthesis, characterization, and investigation of optical properties of Sb3+-doped lithium silicates nanoparticles
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, IR
- Laboratory of Photonics and Nano Crystals, School of Engineering-Emerging Technologies, University of Tabriz, Tabriz, IR
Published in Issue 2012-09-19
How to Cite
Alemi, A., Khademinia, S., Dolatyari, M., & Bakhtiari, A. (2012). Hydrothermal synthesis, characterization, and investigation of optical properties of Sb3+-doped lithium silicates nanoparticles. International Nano Letters, 2(1 (December 2012). https://doi.org/10.1186/2228-5326-2-20
HTML views: 11
PDF views: 38
Abstract
Abstract The hydrothermal synthesis and optical properties of undoped and Sb 3+ -doped lithium metasilicate and lithium disilicate nanomaterials were investigated. The microstructures and morphologies of the synthesized Li 2−2 x Sb 2 x SiO 3 and Li 2−2 x Sb 2 x Si 2 O 5 nanoparticles were studied with powder X-ray diffraction and scanning electron microscopy techniques, respectively. The synthesized undoped and doped lithium metasilicate and lithium disilicate nanomaterials, respectively, are isostructural with the standard bulk Li 2 SiO 3 (space group Cmc2 1 ) and Li 2 Si 2 O 5 (space group Ccc2) materials. The electronic absorption and photoluminescence spectra of the synthesized materials are studied. The measured optical properties show dependence on the dopant amounts in the structure.Keywords
- Nanoparticle,
- Lithium silicate,
- Doped material,
- Antimony,
- Hydrothermal
References
- Kudo et al. (1988) Tritium release behavior of ceramic breeder candidates for fusion reactors https://doi.org/10.1016/0022-3115(88)90303-0
- Wen et al. (2007) Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics https://doi.org/10.1016/j.actamat.2007.02.009
- Yamaguchi et al. (2007) Membranes for high temperature CO2 separation: part II - lithium silicate based membranes https://doi.org/10.1016/j.memsci.2007.01.028
- Essaki et al. (2006) CO2 removal at high temperature using packed bed of lithium silicate pellets https://doi.org/10.2109/jcersj.114.739
- Pfeiffer et al. (1998) Synthesis of lithium silicates https://doi.org/10.1016/S0022-3115(98)00449-8
- Mosqueda et al. (2006) Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O) https://doi.org/10.1021/cm060122b
- Ilyushin (2002) Phase relations in the LiOH-TiO2-SiO2-H2O system at 500°C and 0.1 GPa https://doi.org/10.1023/A:1020098426533
- Kumar and Buddhudu (2009) Synthesis and emission analysis of RE3+ (Eu3+ or Dy3+):Li2TiO3 ceramics https://doi.org/10.1016/j.ceramint.2007.09.107
- Romanowski et al. (2000) Investigation of LiXO3 (X = Nb, Ta) crystals doped with luminescent ions: recent results https://doi.org/10.1016/S0925-8388(99)00715-X
- Hreniak et al. (2006) Spectroscopic investigations of nanostructured LiNbO3 doped with Eu3+ https://doi.org/10.1016/j.jlumin.2005.12.054
- Yang et al. (2007) Synthesis and luminescence properties of a novel Eu3+-doped γ-LiAlO2 phosphor https://doi.org/10.1016/j.matlet.2007.03.011
- Ignatovych et al. (2007) Spectral study on manganese- and silver-doped lithium tetraborate phosphors https://doi.org/10.1016/j.radphyschem.2007.02.066
- Ganesan (2007) Li1−x Sm1+x SiO4 as solid electrolyte for high temperature solid-state lithium batteries https://doi.org/10.1007/s11581-007-0110-2
- Ganesan et al. (2008) Lithium ion conduction in sol-gel derived lithium samarium silicate solid electrolyte https://doi.org/10.1016/j.jallcom.2006.10.126
- Ganesan (2009) Synthesis and characterization of lithium holmium silicate solid electrolyte for high temperature lithium batteries https://doi.org/10.1007/s10800-008-9754-5
- Ganesan (2007) A new promising high temperature lithium battery solid electrolyte https://doi.org/10.1016/j.elecom.2007.05.012
- Takeda et al. (2008) Ionic conductivity of LixLa10−x(SiO4)6O3−x sinters https://doi.org/10.2109/jcersj2.116.803
- Naik et al. (2009) Synthesis and luminescence investigation of RE3+ (Eu3+, Tb3+ and Ce3+)-doped lithium silicate (Li2SiO3) https://doi.org/10.1016/j.jlumin.2009.06.001
- Deng et al. (2010) Broadband near-infrared emission from Cr4 + - doped transparent glass-ceramics based on lithium silicate https://doi.org/10.1016/j.cplett.2009.12.063
- Nakazawa et al. (1998) Ab initio MO study on hydrogen release from surface of lithium silicate https://doi.org/10.1016/S0022-3115(98)00426-7
- Victoria et al. (2008) Textural, structural, and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4) https://doi.org/10.1021/cm802132t
- Rodriguez et al. (1997) Site distribution in Cr3+ and Cr3+- Tm3+-doped alkaline silicate glasses https://doi.org/10.1016/S0022-2313(96)00372-9
- Elbatal et al. (2010) Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses https://doi.org/10.1016/j.physb.2010.08.071
- Abd et al. (2010) Beam interactions with materials and atoms https://doi.org/10.1016/j.nimb.2009.09.038
- Yang et al. (2009) Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants https://doi.org/10.1016/S1003-6326(08)60349-0
- Sen et al. (2004) The effect of dopant Sb on the superhydrophilicity and the microstructure of the nanoscale TiO2 thin film
- Mandalapu et al. (2006) Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection https://doi.org/10.1063/1.2178470
- Hu and Hou (2004) Preparation and characterization of Sb-doped SnO2 thin films from colloidal precursors https://doi.org/10.1016/j.matchemphys.2004.01.039
- Lee and Park (2006) Structural, electrical and optical characteristics of SnO2:Sb thin films by ultrasonic spray pyrolysis https://doi.org/10.1016/j.tsf.2006.01.001
- Lupan et al. (2010) Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route
- Mandalapu et al. (2007) Al/Ti contacts to Sb-doped p-type ZnO https://doi.org/10.1063/1.2759874
- Gutiérrez et al. (2008) Low temperature synthesis of Li2SiO3: effect on its morphological and textural properties
- Zhang and Easteal (2008) Effect of HNO3 on crystalline phase evolution in lithium silicate powders prepared by sol-gel processes https://doi.org/10.1007/s10853-008-2736-5
- Fuss et al. (2006) In-situ crystallization of lithium disilicate glass: effect of pressure on crystal growth rate https://doi.org/10.1016/j.jnoncrysol.2006.06.038
- Soares et al. (2003) TEM and XRD study of early crystallization of lithium disilicate glasses https://doi.org/10.1016/j.jnoncrysol.2003.08.075
- Zheng et al. (2008) Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics https://doi.org/10.1016/j.actamat.2007.10.024
- Mahmoud (2007) Blacksburg
- Ge et al. (2010) Controllable synthesis and formation mechanism of bow-tie-like Sb2O3 nanostructures via a surfactant-free solvothermal route https://doi.org/10.1016/j.jallcom.2010.01.064
- Deng et al. (2009) Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section https://doi.org/10.1007/s12274-009-9014-y
- Grund et al. (2006) Antimony and antimony compounds Weinheim
- De Jong et al. (2005) Glass Weinheim
- Peiniger and Piel (1985) A superconducting Nb3Sn coated multicell accelerating cavity https://doi.org/10.1109/TNS.1985.4334443
- Moura and Hernane (2007) Melting and purification of niobium American Institution of Physics
- Ye (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires https://doi.org/10.1016/S0009-2614(02)01018-7
- Lide (2006) Taylor and Francis
- Hsu et al. (2006) Luminescent properties of solution-grown ZnO nanorods https://doi.org/10.1063/1.2214137
- Her et al. (2006) Low-temperature growth and blue luminescence of SnO2 nanoblades https://doi.org/10.1063/1.2235925
10.1186/2228-5326-2-20