10.1186/2228-5326-2-20

Hydrothermal synthesis, characterization, and investigation of optical properties of Sb3+-doped lithium silicates nanoparticles

  1. Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, IR
  2. Laboratory of Photonics and Nano Crystals, School of Engineering-Emerging Technologies, University of Tabriz, Tabriz, IR
Cover Image

Published in Issue 2012-09-19

How to Cite

Alemi, A., Khademinia, S., Dolatyari, M., & Bakhtiari, A. (2012). Hydrothermal synthesis, characterization, and investigation of optical properties of Sb3+-doped lithium silicates nanoparticles. International Nano Letters, 2(1 (December 2012). https://doi.org/10.1186/2228-5326-2-20

HTML views: 11

PDF views: 38

Abstract

Abstract The hydrothermal synthesis and optical properties of undoped and Sb 3+ -doped lithium metasilicate and lithium disilicate nanomaterials were investigated. The microstructures and morphologies of the synthesized Li 2−2 x Sb 2 x SiO 3 and Li 2−2 x Sb 2 x Si 2 O 5 nanoparticles were studied with powder X-ray diffraction and scanning electron microscopy techniques, respectively. The synthesized undoped and doped lithium metasilicate and lithium disilicate nanomaterials, respectively, are isostructural with the standard bulk Li 2 SiO 3 (space group Cmc2 1 ) and Li 2 Si 2 O 5 (space group Ccc2) materials. The electronic absorption and photoluminescence spectra of the synthesized materials are studied. The measured optical properties show dependence on the dopant amounts in the structure.

Keywords

  • Nanoparticle,
  • Lithium silicate,
  • Doped material,
  • Antimony,
  • Hydrothermal

References

  1. Kudo et al. (1988) Tritium release behavior of ceramic breeder candidates for fusion reactors https://doi.org/10.1016/0022-3115(88)90303-0
  2. Wen et al. (2007) Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics https://doi.org/10.1016/j.actamat.2007.02.009
  3. Yamaguchi et al. (2007) Membranes for high temperature CO2 separation: part II - lithium silicate based membranes https://doi.org/10.1016/j.memsci.2007.01.028
  4. Essaki et al. (2006) CO2 removal at high temperature using packed bed of lithium silicate pellets https://doi.org/10.2109/jcersj.114.739
  5. Pfeiffer et al. (1998) Synthesis of lithium silicates https://doi.org/10.1016/S0022-3115(98)00449-8
  6. Mosqueda et al. (2006) Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O) https://doi.org/10.1021/cm060122b
  7. Ilyushin (2002) Phase relations in the LiOH-TiO2-SiO2-H2O system at 500°C and 0.1 GPa https://doi.org/10.1023/A:1020098426533
  8. Kumar and Buddhudu (2009) Synthesis and emission analysis of RE3+ (Eu3+ or Dy3+):Li2TiO3 ceramics https://doi.org/10.1016/j.ceramint.2007.09.107
  9. Romanowski et al. (2000) Investigation of LiXO3 (X = Nb, Ta) crystals doped with luminescent ions: recent results https://doi.org/10.1016/S0925-8388(99)00715-X
  10. Hreniak et al. (2006) Spectroscopic investigations of nanostructured LiNbO3 doped with Eu3+ https://doi.org/10.1016/j.jlumin.2005.12.054
  11. Yang et al. (2007) Synthesis and luminescence properties of a novel Eu3+-doped γ-LiAlO2 phosphor https://doi.org/10.1016/j.matlet.2007.03.011
  12. Ignatovych et al. (2007) Spectral study on manganese- and silver-doped lithium tetraborate phosphors https://doi.org/10.1016/j.radphyschem.2007.02.066
  13. Ganesan (2007) Li1−x Sm1+x SiO4 as solid electrolyte for high temperature solid-state lithium batteries https://doi.org/10.1007/s11581-007-0110-2
  14. Ganesan et al. (2008) Lithium ion conduction in sol-gel derived lithium samarium silicate solid electrolyte https://doi.org/10.1016/j.jallcom.2006.10.126
  15. Ganesan (2009) Synthesis and characterization of lithium holmium silicate solid electrolyte for high temperature lithium batteries https://doi.org/10.1007/s10800-008-9754-5
  16. Ganesan (2007) A new promising high temperature lithium battery solid electrolyte https://doi.org/10.1016/j.elecom.2007.05.012
  17. Takeda et al. (2008) Ionic conductivity of LixLa10−x(SiO4)6O3−x sinters https://doi.org/10.2109/jcersj2.116.803
  18. Naik et al. (2009) Synthesis and luminescence investigation of RE3+ (Eu3+, Tb3+ and Ce3+)-doped lithium silicate (Li2SiO3) https://doi.org/10.1016/j.jlumin.2009.06.001
  19. Deng et al. (2010) Broadband near-infrared emission from Cr4 + - doped transparent glass-ceramics based on lithium silicate https://doi.org/10.1016/j.cplett.2009.12.063
  20. Nakazawa et al. (1998) Ab initio MO study on hydrogen release from surface of lithium silicate https://doi.org/10.1016/S0022-3115(98)00426-7
  21. Victoria et al. (2008) Textural, structural, and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4) https://doi.org/10.1021/cm802132t
  22. Rodriguez et al. (1997) Site distribution in Cr3+ and Cr3+- Tm3+-doped alkaline silicate glasses https://doi.org/10.1016/S0022-2313(96)00372-9
  23. Elbatal et al. (2010) Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses https://doi.org/10.1016/j.physb.2010.08.071
  24. Abd et al. (2010) Beam interactions with materials and atoms https://doi.org/10.1016/j.nimb.2009.09.038
  25. Yang et al. (2009) Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants https://doi.org/10.1016/S1003-6326(08)60349-0
  26. Sen et al. (2004) The effect of dopant Sb on the superhydrophilicity and the microstructure of the nanoscale TiO2 thin film
  27. Mandalapu et al. (2006) Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection https://doi.org/10.1063/1.2178470
  28. Hu and Hou (2004) Preparation and characterization of Sb-doped SnO2 thin films from colloidal precursors https://doi.org/10.1016/j.matchemphys.2004.01.039
  29. Lee and Park (2006) Structural, electrical and optical characteristics of SnO2:Sb thin films by ultrasonic spray pyrolysis https://doi.org/10.1016/j.tsf.2006.01.001
  30. Lupan et al. (2010) Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route
  31. Mandalapu et al. (2007) Al/Ti contacts to Sb-doped p-type ZnO https://doi.org/10.1063/1.2759874
  32. Gutiérrez et al. (2008) Low temperature synthesis of Li2SiO3: effect on its morphological and textural properties
  33. Zhang and Easteal (2008) Effect of HNO3 on crystalline phase evolution in lithium silicate powders prepared by sol-gel processes https://doi.org/10.1007/s10853-008-2736-5
  34. Fuss et al. (2006) In-situ crystallization of lithium disilicate glass: effect of pressure on crystal growth rate https://doi.org/10.1016/j.jnoncrysol.2006.06.038
  35. Soares et al. (2003) TEM and XRD study of early crystallization of lithium disilicate glasses https://doi.org/10.1016/j.jnoncrysol.2003.08.075
  36. Zheng et al. (2008) Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics https://doi.org/10.1016/j.actamat.2007.10.024
  37. Mahmoud (2007) Blacksburg
  38. Ge et al. (2010) Controllable synthesis and formation mechanism of bow-tie-like Sb2O3 nanostructures via a surfactant-free solvothermal route https://doi.org/10.1016/j.jallcom.2010.01.064
  39. Deng et al. (2009) Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section https://doi.org/10.1007/s12274-009-9014-y
  40. Grund et al. (2006) Antimony and antimony compounds Weinheim
  41. De Jong et al. (2005) Glass Weinheim
  42. Peiniger and Piel (1985) A superconducting Nb3Sn coated multicell accelerating cavity https://doi.org/10.1109/TNS.1985.4334443
  43. Moura and Hernane (2007) Melting and purification of niobium American Institution of Physics
  44. Ye (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires https://doi.org/10.1016/S0009-2614(02)01018-7
  45. Lide (2006) Taylor and Francis
  46. Hsu et al. (2006) Luminescent properties of solution-grown ZnO nanorods https://doi.org/10.1063/1.2214137
  47. Her et al. (2006) Low-temperature growth and blue luminescence of SnO2 nanoblades https://doi.org/10.1063/1.2235925