Synthesis and characterization of Aluminium Oxide nanoparticles using Ammonia precipitation method: A novel approach for environmentally friendly pollutant remediation in environmental system
- Nano Lab, School of Sciences, ITM University, Gwalior, MP, India
Received: 2024-09-07
Revised: 2024-11-26
Accepted: 2024-11-29
Published 2025-04-01
Copyright (c) 2024 Ranjana Goswami, Mahdi Shahrestani, Yogesh Chandra Goswami (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 62
Abstract
This study focuses on synthesizing aluminium oxide nanoparticles using aluminium chloride and investigates their potential for removing cadmium from wastewater. The synthesized nanoparticles were thoroughly characterized to determine their structural and luminescence properties. The results indicate that the nanoparticles possess a crystalline structure and exhibit luminescence behaviour in the visible region. X-ray diffraction analysis confirmed the formation of rhombohedral aluminium oxide nanoparticles. The XRD pattern revealed the (012), (104), (006), (202), (024), (116), and (300) peaks of Al2O3 nanoparticles with crystallite sizes ranging from 46-68 nm. Moreover, UV-Vis spectrophotometer analysis revealed a significant increase in absorption intensity when aluminium oxide nanoparticles were introduced, demonstrating their effectiveness as an adsorbent for cadmium removal from wastewater. Aluminium chloride yielded superior results in synthesizing aluminium oxide nanoparticles.
Keywords
- Aluminium oxide,
- Coprecipitation,
- Metal oxide,
- Nanoparticles,
- Pollutant Remediation
References
- Goswami Y. C., Begzaad S., Kaundal J. B., (2022), Highly luminescent Cu-doped SnO2 nanocomposites and their photocatalytic application as excellent methylene dye removal. J. Adv. Sci. Res. 13: 94-103, https://doi.org/10.55218/JASR.202213417.
- Westall F., Brack A., (2018), The Importance of Water for Life. Space Sci. Rev. 214(2): 50, https://doi.org/10.1007/s11214-018-0476-7.
- Issakhov A., Alimbek A., Zhandaulet Y., (2021), The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study. J. Clean. Prod. 282(1):125239, https://doi.org/10.1016/j.jclepro.2020.125239.
- Abdelbasir S.M., Shalan A.E., (2019), An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 36(8):1209-1225, doi:10.1007/s11814-019-0306-y.
- Archer J., (1996), The Water You Drink: How Safe Is It. ABC Books.
- Goswami Y.C., Bisauriya R., Hlaing A.A., Moe T.T., Aryanto D., (2023), Highly fluorescent ZnS encapsulated flexible nanocellulose grown by two-step hydrothermal route and their optical, structural and morphological characterization. Mat. Sci. and Engg. B 296: 116708, https://doi.org/10.1016/j.mseb.2023.116708.
- Kaundal J. B, Goswami Y. C, Sharma R., (2022), Optically Important Transparent Syndiotactic Polystyrene/Fes Composites Grown by Low Sol-Gel Route. Orient J. Chem. 38(3). doi: http://dx.doi.org/10.13005/ojc/380330
- S. Nagaich, Goswami Y.C., (2015), Shor's Algorithm for Quantum Numbers Using MATLAB Simulator, Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 2015:165-168, doi: 10.1109/ACCT.2015.16.
- Johnston R. B., Johnston P. R., (2006), The Politics of Healing: Histories of Alternative Medicine in Twentieth-Century North America. Routledge.
- Kumar V., Rajaram P., Goswami Y. C., (2017), Sol–gel synthesis of SnO2/CdS heterostructures using various Cd:S molar ratio solutions and its application in photocatalytic degradation of organic dyes. J. Mater Sci.: Mater. Electron. 28: 9024–9031, doi: 10.1007/s10854-017-6634-y.
- Genchi G, Sinicropi M.S., Lauria G., Carocci A., Catalano A., (2020), The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health. 17(11):3782, doi: 10.3390/ijerph17113782.
- Koller M., Saleh H.M., (2018), Introductory Chapter: Introducing Heavy Metals. Heavy Metals. InTech. doi: 10.5772/intechopen.74783.
- Westall F., Brack A., (2018),The Importance of Water for Life. Space Sci. Rev. 214(2), doi:10.1007/s11214-018-0476-7.
- Kaundal J.B., Tiwari R. K., Goswami Y.C., (2023), Hydrothermally grown CdS-embedded graphene oxide nanocomposites with enhanced optical properties. Emer. Mate. Res.12(3):1-5, doi: 10.1680/jemmr.22.00019.
- Goswami Y.C., Kaundal J.B., Begzaad S, (2023), Photocatalytic degradation of Methyl Red dye using highly efficient ZnO/CdS hierarchical heterostructures under white LED. J Iran. Chem. Soc. 20: 1681–1697, doi:10.1007/s13738-023-02789-8.
- Johnston R. B., Johnston P. R., (2006), The Politics of Healing: Histories of Alternative Medicine in Twentieth-Century North America. Routledge. doi: 10.4324/9780203506073.
- Mohapatra R., Kaundal J. B., Goswami Y. C., (2022), Synthesis of optically important transparent SnS/PS composite films through chemical route and their photocatalytic applications. J. Ovonic. Res. 18(3): 343–355, doi: 10.15251/JOR.2022.183.343.
- Charkiewicz A.E., Omeljaniuk W.J., Nowak K., Garley M., Nikliński J., (2023), Cadmium Toxicity and Health Effects—A Brief Summary. Mol. 28:6620, https://doi.org/10.3390/molecules28186620.
- Singh R., Kumar D., Goswami Y. C., Sharma R., (2019), Synthesis, spectral studies and quantum-chemical investigations on S-benzyl β-N-(4-biscyno diethylamino phenylmethylene) dithiocarbazate. Arab. J. Chem. 12(7): 1537–1544, doi: https://doi.org/10.1016/j.arabjc.2014.10.022.
- Goswami Y. C., Goswami Ranjana, Chirova T. K., (2024), Highly Effective Antifungal and Antibacterial Properties of ZnO, ZnS, FeS and SnO2 Nanoparticles Against Various Fungal and Bacterial Isolates. Orient. J. Chem., 40(2) 492, doi: 10.13005/ojc/400222.
- Lakshminarayanan C. V., Bhattacharya I. (2014). Adv. in optical science and engineering. Springer Proc. Phys. 166: 533–539.
- Qa M., Ms. K., (2016). Effect on Human Health due to Drinking Water Contaminated with Heavy Metals. J. Pollut. Eff. Control, 05(01), doi: 10.4172/2375-4397.1000179.
- Lee J. K., Yoon Y., Kim J. H., Kim S. H., (2019), Application of advanced oxidation processes for wastewater treatment: a review, Sustain. 11(8): 2195, https://doi.org/10.3390/w11020205.
- Aksu Z., Isoglu I. A., (2021), Bio-remediation of water pollutants by microorganisms: current and future prospects, Chemosphere, 272, 129622, https://doi.org/10.3389/fagro.2023.1183691.
- Wang X., Zheng Y., Shen J., (2018), Recent advances in the application of coagulation/flocculation for wastewater treatment, Environ. Eng. Sci. 35(3): 209-223, DOI: 10.1016/j.jclepro.2022.131133.
- Jia M., Farid M. U., Kharraz J.A., Kumar N.M., Chopra S.S., Jang A., Chew J., Khanal, S.K., Chen G., An A., (2023), Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference, Water Res., 245:120613. https://doi.org/10.1016/j.watres.2023.120613.
- Goswami Y.C., Bisauriya R., Hlaing A.A., Moe T.T., Kaundal J.B., Aryanto D., Yudianti R., (2024), Enhancing photocatalytic performance of SnO2/ZnS nanocomposites synthesized via dual-step precipitation and ultrasonicated hydrothermal route, Curr. Appl. Phys. 68: 275-283,https://doi.org/10.1016/j.cap.2024.10.011.
- Kumar N., Purohit L. P., Goswami Y. C., (2016), Spin coating of ZnS nanostructures on filter paper and their characterization. Phys. E Low-Dimens. Syst. Nanostruct. 83: 333- 338. DOI: https://doi.org/10.1016/j.physe.2016.04.025.
- Kumar N., Purohit L. P., Goswami Y. C.,(2015), Synthesis of Cu-doped ZnS nanostructures on flexible substrate using low-cost chemical method. AIP Conf. Proc. 1675: 020030. DOI: https://doi.org/10.1063/1.4929188.
- Fiyadh S.S., Alsaadi M.A., Jaafar W.Z., Alomar M.K., Fayaed S.S., Mohd N.S., Hin L.S., El-Shafie A., (2019), Review on heavy metal adsorption processes by carbon nanotubes, J. Clean. Prod. 230:783-793, https://doi.org/10.1016/j.jclepro.2019.05.154.
- Yaqoob A.A., (2020), Role of Nanomaterials in the Treatment of Wastewater: A Review. Water. 12(2), https://doi.org/10.3390/w12020495.
- Vinayagam R., Nagendran V., Goveas L.C., Narasimhan M.K., Varadavenkatesan T., Chandrasekar N., Raja Selvaraj R., (2024), Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide, Mat. Chem. Phys., 313: 128787. doi: 10.1016/j.matchemphys.2023.1287.
- Selvaraj R., Nagendran V., Varadavenkatesan T., Goveas L.C., Vinayagam R., (2024), Stable silver nanoparticles synthesis using Tabebuia aurea leaf extract for efficient water treatment: A sustainable approach to environmental remediation, Chem. Engg. Res. Des. 208: 456-463, https://doi.org/10.1016/j.cherd.2024.07.012.
- Varadavenkatesan T., Nagendran V., Vinayagam R., Goveas L.C., Selvaraj R., (2024), Effective degradation of dyes using silver nanoparticles synthesized from Thunbergia grandiflora leaf extract, Biores. Tech. Rep.27:101914, https://doi.org/10.1016/j.biteb.2024.101914.
- Ansari, S. A. and Parveen, N., (2024), Enhanced Photocatalytic Degradation of Organic Pollutants Using Iron Lanthanum Oxide Nanoparticles. Mat. Sci. Exp. 1(1):28-32; https://doi.org/10.69626/mse.2024.0028.
- Ansari S. A., (2023), Elemental semiconductor red phosphorus/ZnO nanohybrids as high-performance photocatalysts. Ceram. Int. 49:17746–17752. doi: https://doi.org/10.1016/j.ceramint.2023.02.140.
- Parveen N., Alqahtani F. O., Alsulaim G. M., Alsharif S. A., Alnahdi K. M., Alali H. A., Ahmad M. M., Ansari S. A., (2023), Emerging mesoporous polyacrylamide/gelatin–iron lanthanum oxide nanohybrids towards the antibiotic drugs removal from wastewater. Nanomat. 13(21): 2835. DOI: https://doi.org/10.3390/nano13212835.
- Ansari S. A., Parveen N., Alsulaim G. M., Ansari A. A., Alsharif S. A., Alnahdi K. M., Alali H. A., Reddy V. R. M., (2023), Emerging NiO–rGO nanohybrids for antibiotic pollutant degradation under visible-light irradiation. Surf. Int. 40:103078. doi: https://doi.org/10.1016/j.surfin.2023.103078.
- Alrayzan H. I., Ansari S. A., Parveen N.,(2022), Fabrication of asymmetric supercapacitor device based on nickel hydroxide electrode-graphene assembly. J. Nanoelectron. Optoelectron. 17(3): 536–543. https://doi.org/10.1166/jno.2022.3246
- Azari B., Pourahmad A., Sadeghi B., Mokhtary M., (2023), J. Coord. Chem. 76(2): 219–231. doi: https://doi.org/10.1080/00958972.2023.2166408.
- Sadeghi B., Vahdati, R.A.R., (2012), Appl. Surf. Sci. 258 (7): 3086-3088. https://doi.org/10.1016/j.apsusc.2011.11.042
- Thekkudan V.N., Vaidyanathan V.K., Ponnusamy S.K., Charles C., Sundar S., Vishnu D., Anbalagan S., Vaithyanathan V.K., Subramanian S., (2017), Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnol. 11(3):213-224. https://doi.org/10.1049/iet-nbt.2015.0114
- Thirumalaivasan N, Venkatesan P, Lai PS, Wu SP., (2019), In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles. ACS Appl. Biomat. 2: 3886-3896. https://doi.org/10.1021/acsabm.9b00481
- Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR., (2023), Biosurfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit. Rev. Food Sci. Nutr. 64(30):10925–10949, https://doi.org/10.1080/10408398.2023.2230491
- Venkatesan P, Thirumalaivasan N, Yu HP, Lai PS, Wu SP., (2019), Redox stimuli delivery vehicle based on transferrin-capped MSNPs for targeted drug delivery in cancer therapy. ACS Appl. Bio Mater. 2(4):1623-1633. https://doi.org/10.1021/acsabm.9b00036
- Murugesan V., Govindarasu M., Manoharadas S., Pandiaraj S., Thiruvengadam M., Govindasamy R., Vaiyapuri M., (2023), Combinatorial anticancer effects of multi metal ion and drug substitute with hydroxyapatite coatings on surgical grade 316LSS stainless steel alloys towards biomedical applications, J. Mater. Res. Technol. 27:7244-7258. https://doi.org/10.1016/j.jmrt.2023.11.036.
- Thandavamoorthy R, Krishnan V. R., Reddy M.I., Obaid S.A., Alharbi S.A., Kalam M.A., (2023), Studies on mechanical and morphological behaviors of banyan/kevlar fibers reinforced MgO particulates hybrid aliphatic epoxy composite. Int. J. Adv. Manuf. Tech. 130:1-8. https://doi.org/10.1007/s00170-023-11852-w.
- Punia P., Bharti M.K., Chalia S., Dhar R., Ravelo B., Thakur P., Thakur A., (2021), Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- A review. Ceram. Int. 47(2): 1526-1550. https://doi.org/10.1016/j.ceramint.2020.09.050.
- Pal D., Singh G., Goswami Y. C., Kumar V., (2019), Synthesis of randomly oriented self-assembled CuS nanorods by co-precipitation route. J. Mater. Sci.: Mater. Electron. 30:15700–15704. DOI: https://doi.org/10.1007/s10854-019-01953-2.
- Sharma, R., Singh, R., Goswami, Y.C., Kumar V., Kumar D., (2021), Highly luminescent CdS nanoparticles synthesized using microwave irradiation of Dithiocarbazate ligand as a single molecular precursor source. J. Aust. Ceram. Soc. 57:697–703. https://doi.org/10.1007/s41779-021-00563-8.
- Goswami, Y.C., Sharma, R., Rajaram, P., (2014), Growth of CdS Nanostructures by New Sol-Gel Route and Its Optical Characterization. Nanotech. Nanosci., 2(1):38-41.
- Goswami, Y.C., Kumar, V., Sharma, R., Singh, R.,(2014), Synthesis of CdS/CdSe core/shell ultra-small nanostructures using new microwave-assisted ultrasonic sol-gel route. AIP Conference Proceedings, 1591(1): 414-416. https://doi.org/10.1063/1.4872622.
- Lu H., Wang J., Stoller M., Wang T., Bao Y., Hao H, (2016), An Overview of Nanomaterials for Water and Wastewater Treatment, Adv. Mater. Sci. Eng., 4964828:1-10. https://doi.org/10.1155/2016/4964828.
- Mura S., Jiang Y., Vassalini I., Gianoncelli A., Alessandri I., Granozzi G., Calvillo L., Senes N., Enzo S., Innocenzi P., Malfatti L., (2018), Graphene Oxide/Iron Oxide Nanocomposites for Water Remediation, ACS Appl. Nano Mat. 1(12):6724-6732, doi: 10.1021/acsanm.8b01540.
- Xu P., Guang, Zeng G.M., Huang D.L., Lai C., Zhao M.H., Wei Z., Li N.J., Huang C., Xie G.X., (2012), Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis, Chem. Eng. J., 203: 423-431, https://doi.org/10.1016/j.cej.2012.07.048.
- Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., Wang, H., Liu, Y., (2011), Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interface Sci. 359(1): 24-29. https://doi.org/10.1016/j.jcis.2011.02.064.
- Saleem, J., Asghar H. M. A., Tahir M. B., Batool M., Saeed S., Shah M. R., Siddiq M., (2020), Carbon nanotubes: A promising material for wastewater treatment. J. Mol. Liquids, 309: 113068. DOI: 10.1088/1742-6596/61/1/140.
- Wang K., Yang X., Zhang L., Chen C., Chen Y., Zhang J., (2018), Efficient removal of organic pollutants from water using metal–organic frameworks (MOFs): A review, J. Hazard. Mater. 341: 298-318. https://doi.org/10.1016/j.chemosphere.2021.131393
- Lin G., Zeng B., Li J., Wang Z., Wang S., Hu T., Zhang L., (2023), A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism, Chem. Eng. J., 460: 2141710, https://doi.org/10.1016/j.cej.2023.141710.
- Ziva A. Z., Yuni, Suryana K., Kurniadianti Y. S., Ragadhita R., Nandiyanto A. B. D., Kurniawan T. (2021). Recent progress on the production of aluminum oxide (Al₂O₃) nanoparticles: A review. Mech. Eng. Soc. Ind. 1(2):54–77. https://doi.org/10.31603/mesi.5493.
- Mohammed A.A., Z.T. Khodair, Khadom A.A., (2020), Preparation, characterization and application of Al2O3 nanoparticles for the protection of boiler steel tubes from high temperature corrosion. Ceram. Int. 46(17): 26945-26955. https://doi.org/10.1016/j.ceramint.2020.07.172.
- Ravindhranath K, Ramamoorty M., (2017), Nano aluminum oxides as adsorbents in water remediation methods: A review, RASAYAN J. Chem., 10(3):716-722. doi:10.7324/RJC.2017.1031762.
- Zhang Z., Zhu Y., Asakura H., Zhang B., Zhang J., Zhou M., Han Y., Tanaka T., Wang A., Tao Zhang T., Yan N., (2017), Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat Comm. 8: 16100. https://doi.org/10.1038/ncomms16100.
- Mahdavi S., Jalali M., Afkhami A., (2015), Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol. Environ. Policy 17:85–102. DOI: https://doi.org/10.1007/s10098-014-0764-1.
- Alghriany A. I., EL-din H. M., Omar A. M., Mahmoud M., Atia M. M., (2022), Assessment of the toxicity of aluminum oxide and its nanoparticles in the bone marrow and liver of male mice: Ameliorative efficacy of curcumin nanoparticles. ACS Omega 7(16): 13841–13852, https://doi.org/10.1021/acsomega.2c00195
- Awad M. A., Jalab R., Benamor A., Nasser M. S., Ba-Abbad M. M., El-Naas M., Mohammad A. W., (2020), Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 301: 112335. doi: https://doi.org/10.1016/j.molliq.2019.112335.
- Martínez G., Merinero M., Pérez-Aranda M., Pérez-Soriano E. M., Ortiz T., Begines B., Alcudia A., (2020), Environmental impact of nanoparticles' application as an emerging technology: A review. Mat. 14(1):166. DOI: https://doi.org/10.3390/ma14010166.
- Zhang H., He X., Zhang Z., Zhang P., Li Y., Ma Y. (2020).Toxicity of aluminum oxide nanoparticles to aquatic organisms: a review. Desalin. Water Treat., 195:286-296. doi: 10.5004/dwt.2020.25882.
- Keller A.A., Lazareva A., Suh S., Keller J., Theis T., (2013), Comparative analysis of environmental impacts of manufactured nanomaterials. Env. Sci. Tech. 47(17): 8689-8699. https://doi.org/10.1021/ez400106t
- Sreya A., Chidambaran C. K., (2021), An overview on the applications and environmental risk assessment of nanomaterials in aquatic organisms. J. Biol. Nat. 13(1): 1–30.
- Zhu X., Jin Q., Ye Z., (2020), Life cycle environmental and economic assessment of alumina recovery from secondary aluminium dross in China. J. Cleaner Prod. 277:123291. https://doi.org/10.1016/j.jclepro.2020.123291.
- Liu S., Zhang Y., Wu X., Zhao H., Guo X., (2015), Enhanced removal of heavy metal ions from aqueous solutions by kaolin modified with ionic liquid and aluminium oxide, J. Hazard. Mater. 299:703-712. DOI: 10.1016/j.jhazmat.2015.07.070.
- Hou L., Zhang Q., Han J., Li X., Wang, P., (2018), Adsorption of methylene blue onto mesoporous aluminium oxide: Equilibrium, kinetics, and thermodynamics. Matls. 6:11. doi: 10.3390/ma11081374.
- Li H., Budarin V.L. , Clark J.H., North M., Wu X., (2022), Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons: Mechanism and porosity dependence, J. Hazard. Mat., 436:129174, https://doi.org/10.1016/j.jhazmat.2022.129174.
- Zhang H., He X., Zhang Z., Zhang P., Li Y., Ma Y., (2018), Cost-effective synthesis of aluminium oxide nanoparticles for environmental applications. J. Envron. Manag. 207:412-418. https://doi.org/10.1016/j.jes.2018.12.008
- Hassanzadeh-Tabrizi S.A., Taheri-Nassaj E.,(2009), Economical synthesis of Al2O3 nanopowder using a precipitation method. Mat. Lett., 63(27):2274-2276. https://doi.org/10.1016/j.matlet.2009.07.035.
- Kim, H., Yang, S., & Lee, J., (2016), Energy-efficient synthesis of aluminium oxide nanoparticles using moderate heating. Mat. Chem. Phy., 184:49-56. https://doi.org/10.1016/j.matchemphys.2015.01.019.
- Sangor F., Al-Ghouti M.A., (2023),Waste-to-value: Synthesis of nano-aluminum oxide (nano-γ-Al2O3) from waste aluminum foils for efficient adsorption of methylene blue dye. Case Stud.Chem. Environ. Eng., 8: 100394,https://doi.org/10.1016/j.cscee.2023.100394.
- Banerjee S., Dubey S., Gautam R.K., Chattopadhyaya M.C., Sharma Y.C., (2019), Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions, Arab. J. Chem. 12(8): 5339-5354, https://doi.org/10.1016/j.arabjc.2016.12.016.
- Hussein M.Y., Al-naemi A.N.A., Aljaberi F.Y., (2023), Experimental Study of Produced Water Treatment Using Activated Carbon with Aluminum Oxide Nanoparticles, Nanofiltration and Reverse Osmosis Membranes J. Eco. Engg., 24(5) 78-87, https://doi.org/10.12911/22998993/161231.
- Tsoutsa E. K., Tolkou A.K., Katsoyiannis I.A., and Kyzas G.Z.,(2023), Composite Activated Carbon Modified with AlCl3 for the Effective Removal of Reactive Black 5 Dye from Wastewaters. J. Comp.Sci. 7(6): 224. https://doi.org/10.3390/jcs7060224
- Seo P., Bhadr, B., Ahmed Khan N.A., Jhung S.H.,(2016), Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities. Sci. Rep. 6:34, https://doi.org/10.1038/srep34462
- Oliveira F.F.D., Moura K.O., Costa L.S., Vidal C.B., Loiola A.R. (2020), Reactive Adsorption of Parabens on Synthesized Micro- and Mesoporous Silica from Coal Fly Ash: pH Effect on the Modification Process, ACS Omega 5 (7): 3346-3357, DOI: 10.1021/acsomega.9b03537
- Loganathan P., Vigneswaran S., Kandasamy J., (2013), Enhanced removal of nitrate from water using an aluminium oxide-modified biochar, J. of Envron. Manage. 131C:363-374. doi: 10.1016/j.jenvman.2013.09.034.
- Dai H., Liu H., Chen Y., Xie Y., Zou H., Wu, S. (2017). Enhanced adsorption performance of Al2O3 based composites by incorporating magnetic nanoparticles, J. Colloid Interface Sci. 506:271-279. doi:10.1016/j.jcis.2017.06.019.
- Zhao J., Wang J., Li M., Liu X., Yuan Y., 2019), Fabrication of Al2O3 coated diatomite composite for the adsorption of heavy metal ions, Water Sci. Technol., 80(11): 2141-2148. 10.11648/j.ijec.20180201.13.
- Ali S., Shafqat A., Yasir A., Zareen Z., Butler I.S., (2019), Synthesis of γ-alumina (Al2O3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater. Nanoscale Adv. 1(1): 213-218, https://doi.org/10.1039/C8NA00014J.
- Gupta, V. K., Agarwal, S., Saleh, T. A., (2011), Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater., 185(1), 17-23. https://doi.org/10.1016/j.jhazmat.2010.08.053.
- Wang, X., Wang, X., Liu, Y., Fan, Y.,(2019), Removal of cadmium from water by adsorption on nano γ- Al2O3 particles. Environ. Sci. Poll. Res., 26: 5951-5959. https://doi.org/10.1007/s11356-018-4040-8.
- Liu, P., Zhang, L., & Zhang, M., (2017), Adsorption of heavy metal ions from aqueous solution by a novel in situ synthesized amino-functionalized magnetic nanocomposite. J. Hazard. Mater., 190(1-3):93-99.