Utilize Polypropylene-Titanium Dioxide nano-composite, Graphene Oxide-Chitosan-Bentonite nano-absorbent, and straw to remove petroleum hydrocarbons in aquatic environments aggressively
- Department of Medicinal Plants, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
Received: 2024-08-10
Revised: 2024-11-09
Accepted: 2024-11-15
Published 2025-04-01
Copyright (c) 2024 Shahram Azad Zarabadi, Aptin Rahnavard, Farid Gholamreza Fahimi, Keyvan Saeb (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 21
Abstract
Mitigating petroleum pollutants from wastewater is a critical concern in environmental engineering. Various methods are employed for the removal of these pollutants from wastewater. This research focused on developing adsorbents for the absorption of PAHs from nanocomposites and natural and synthetic materials. polypropylene fiber-titanium dioxide (PPTO) nanocomposite, graphene oxide-chitosan-bentonite (GOCB) Nano-absorbent, Straw (ST), and a combination of these adsorbents (CB)) Nano-absorbents were employed to remove oil pollutants. The experiments were conducted under different acidity levels, varying concentrations of effluent and absorbent, and other retention times. FTIR, SEM, XRD, and GC tests were performed to determine the absorption rate. The results demonstrated that the PPRO nanocomposite and the combination of adsorbents and exhibited the highest removal efficiency, achieving a remarkable 97% removal of petroleum hydrocarbons at a concentration of 10 mg/L. Among the other groups, Straw demonstrated a high absorption rate of 93%, while GOCB showed the lowest rate of 80%. Furthermore, the study identified pH 10 as optimal for PPTO and ST, whereas GOCB performed best at pH 3. Augmenting the adsorbent dosage improved pollutant removal; however, surpassing the optimal level did not result in further enhancements. These findings highlight the potential of the PPTO nanocomposite as a promising solution for eliminating petroleum hydrocarbons from oil-contaminated water, thus contributing to developing effective strategies for addressing oil pollution in aquatic environments.
Keywords
- Absorbent,
- Graphene oxide-chitosan-bentonite (GOCB),
- Nanoparticles,
- Petroleum hydrocarbon,
- Wastewater
References
- ]1[. Terbish, N.; Popuri, S.R.; Lee, C.-H. Fuel (2023), Improved performance of organic-inorganic nanocomposite membrane for bioelectricity generation and wastewater treatment in microbial fuel cells. 332, 126167. [Google Scholar] [CrossRef]. https://DOI: 10.1016/j.fuel.2022.126167
- ]2[. Barman, S.R.; Banerjee, P.; Mukhopadhayay, A.; Das, P. Biorefinery (2022), Biopolymer linked activated carbon-Nano-bentonite composite membrane for efficient elimination of PAH mixture from aqueous solutions. Biomass Convers. 1–15. [Google Scholar] [CrossRef]. https://DOI: 10.1007/s13399-021-02223-0
- ]3[. Gajera, R.; Patel, R.V.; Yadav, A.; Labhasetwar, P.K, (2022), Adsorption of cationic and anionic dyes on photocatalytic flyash/TiO2 modified chitosan biopolymer composite. J. Water Process Eng., 49, 102993. [Google Scholar] [CrossRef]. https://DOI: 10.1016/j.jwpe.2022.102993
- ]4[. Kour, G.; Majhi, P.K.; Bharti, A.; Kothari, R.; Jain, A.; Singh, A.; Tyagi, V.V. Pathania, D; (2022); Biopolymer-Based Nanocomposites and Water Treatment: A Global Outlook. In Biorenewable Nanocomposite Materials, Vol. 2: Desalination and Wastewater Remediation; ACS Symposium Series; American Chemical Society: Washington, DC, USA, Volume 1411, pp. 2–25. ISBN 9780841297807. [Google Scholar]. https://DOI: 10.1021/bk-2022-1411.ch002
- ]5[. Osman, A.I.; El-Monaem, E.M.A.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; López-Maldonado, E.A.; Ihara, I; (2023), Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett., 21, 2337–2398. [Google Scholar] [CrossRef]. Retriveved from https://link.springer.com/article/10.1007/s10311-023-01603-4
- ]6[. Nure, J.F.; Nkambule, T.T.I. (2023), The recent advances in adsorption and membrane separation and their hybrid technologies for micropollutants removal from wastewater. J. Ind. Eng. Chem., 126, 92–114. [Google Scholar] [CrossRef]. https://DOI: 10.1016/j.jiec.2023.06.034
- ]7[. Mostafavi, A.H.; Mishra, A.K.; Gallucci, F.; Kim, J.H.; Ulbricht, M.; Coclite, A.M.; Hosseini, S.S. (2023), Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J. Appl. Polym. Sci.140, e53720. https://DOI: 10.1002/app.53720
- ]8[. Suyambulingam, I.; Gangadhar, L.; Sana, S.S.; Divakaran, D.; Siengchin, S.; Kurup, L.A.; Iyyadurai, J.; Albert Bernad Noble, K.E. (2023), Chitosan Biopolymer and Its Nanocomposites: Emerging Material as Adsorbent in Wastewater Treatment. Adv. Mater. Sci. Eng. 9387016. https://DOI: 10.1155/2023/9387016
- ]9[. Jiang, R.; Shen, T.-T.; Zhu, H.-Y.; Fu, Y.-Q.; Jiang, S.-T.; Li, J.-B.; Wang, J.-L. (2023), Magnetic Fe3O4 embedded chitosan–crosslinked-polyacrylamide composites with enhanced removal of food dye: Characterization, adsorption and mechanism. Int. J. Biol. Macromol. 227, 1234–1244. https://DOI: 10.1016/j.ijbiomac.2022.11.310
- ]10[. Pirestani N, Abolhasani MH, Amin javaheri FS. (2018), Investigating the Use of Straw in Removing Oil Pollution from Water %J Environment and Water Engineering;4(1): 12-22. https://DOI: 10.22038/jreh.2019.37649.1270
- ]11[. Wang J, Zhang J, Han L, Wang J, Zhu L, Zeng H. (2021), Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Advances in Colloid and Interface Science; 289: 102360. https://DOI: 10.1016/j.cis.2021.102360
- ]12[. Politaeva, N.; Yakovlev, A.; Yakovleva, E.; Chelysheva, V.; Tarantseva, K.; Efremova, S.; Ilyashenko, S. (2022), Graphene Oxide-Chitosan Composites for Water Treatment from Copper Water. https://DOI: 10.3390/w14091430
- ]13[. Qi, Y.; Yang, M.; Xu, W.; He, S.; Men, Y. (2021), Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. https://DOI: 10.1016/j.jcis.2016.09.058
- ]14[. Ghorbani, M.; Hassan Vakili, M.; Ameri, E. 2021, Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment. Mater. Today Commun. 28, 102560. https://DOI: 10.1016/j.mtcomm.2021.102560
- ]15[. Sadeghi, (2023), The use of nanotechnology in the transfer of probiotics. Retrieved from https://civilica.com/doc/1824944.
- ]16[. Akpotu, S.O.; Diagboya, P.N.; Lawal, I.A.; Sanni, S.O.; Pholosi, A.; Peleyeju, M.G.; Mthunzi, F.M.; Oromia, A.E. (2023), Designer composite of montmorillonite-reduced graphene oxide-PEG polymer for water treatment: Enrofloxacin sequestration and cost analysis. Chem. Eng. J. 453, 139771. https://DOI: 10.1016/j.cej.2022.139771
- ]17[. Schelling, M.; Patil, K.; Boving, T.B. (2023), Sustainable Water Treatment with Induced Bank Filtration. Water 15, 361. https://DOI: 10.3390/w15020361
- ]18[. Ossai IC, Ahmed A, Hassan A, Hamid FSJET, (2020), Innovation. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. 17:100526. https://DOI: 10.1016/j.eti.2019.100526.
- ]19[. Xiao Y, Chen L, Li Q, Zhang X, Bai Z, Wang KJJSE. (2018), Identification and determination of the thermophysical properties of coal at lower temperature.; 18:137-41. https://DOI: 10.1016/S0045-6535(03)00710-0
- ]20[. Alegbeleye OO, Opeolu BO, Jackson VAJEm. (2017), Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation.; 60:758-83. https://DOI: 10.1371/journal.pone.0041305
- [. Mohammadi L, Rahdar A, Bazrafshan E, Dahmardeh H, Susan MABH, Kyzas GZJP. (2020), Petroleum hydrocarbon removal from wastewaters: a review;8(4):447. https://DOI: 10.3390/pr8040447
- ]22[. Walaszczyk N, Jasiński RJIiOŚ. (2018), Removal of petroleum derivative pollutants from the environment: techniques and methods;21(4):347-59. https://DOI: 10.17512/ios.2018.4.3
- ]23[. Hashemi S. (2015), Reference module in materials science and materials engineering: Elsevier BV. Retrieved from https://search.worldcat.org/title/reference-module-in-materials-science-and-materials-engineering/oclc/931706797.
- ]24[. Kaith BS, Jindal R, Mittal H, Kumar KJJoaps. (2012); Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction–saline emulsions.124(3):2037-47. https://DOI: 10.1002/app.35238
- ]25[. Naumova L, Minakova T, Gorlenko N, Kurzina I, Vasenina I. (2018), Oxidative Destruction of Organic Pollutants on the Polypropylene Fiber Modified by Nanodispersed Iron;5(7):82. https://DOI: 10.3390/environments5070082
- ]26[. Naeem U, Qazi MAJES, Research P. (2020), Leading edges in bioremediation technologies for removal of petroleum hydrocarbons.27(22):27370-82. https://DOI:10.1007/s11356-019-06124-8
- ]27[. Baboli N, bafkara. (2021), Investigation of Nitrate Removal from Aqueous Solutions by Nano Adsorbent of Wheat Straw %J Journal of Natural Environment;74(3):572-87. https://DOI: 10.22059/jne.2021.325138.2229
- ]28[. Liu C, Yin Z, Hu D, Mo F, Chu R, Zhu L, (2021), Biochar derived from chicken manure as a green adsorbent for naphthalene removal; 28:36585-97. https://DOI: 10.1007/s11356-021-13286-x
- ]29[. Haruna A, Chong F-K, Ho Y-C, Merican ZMAJES, Research P. (2022), Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment—a comprehensive review;29(47):70706-45. https://DOI: 10.1007/s11356-022-22749-8.
- ]30[. Tony MA. (2022), Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications. Journal of Dispersion Science and Technology;43 (11): 1612-33. https://DOI: 10.3390/math11102248.
- [. Khalil Pourshamsian, (2019), Determination of physical, chemical and bacteriological parameters of Gorgan city drinking water. Retrieved from https://sid.ir/search/journal/paper.
- ]32[. Khalil Pourshamsian, (2020), Qualitative zoning of Talar river using OWQI index and GIS system. Retrieved from https://civilica.com/doc/201365.
- ]33[. Khalil Pourshamsian,(2018), Investigating the effect and detection of bacterial cells by titanium-coated silver nanoparticles. Retrieved from https://civilica.com/doc/103746.
- ]34[. Szabová R, Černáková Ľ, Wolfová M, Černák MJACS. (2009), Coating of TiO2 nanoparticles on the plasma activated polypropylene fibers;2 (1): 70-6. retrieved from https://acs.fchpt.stuba.sk/papers/acs_0037.pdf.
- ]35[. Abidin ZZ. (2019), Ecofriendly Approach to Adsorption of Congo Red from Aqueous Media Using Chaff Powder from Jatropha curcas Seed (Isotherm and Kinetic Model). https://DOI: 10.5004/dwt.2020.25169.
- ]36[. Szabova, (2009), Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. https://DOI: 10.17221/21/2009-PSE.
- ]37[. Franco CA, Cortés FB, Nassar NNJJoc, science i. (2014), Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue; 425:168-77. https://DOI: 10.1016/j.jcis.2014.03.051.
- ]38[. Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki‐Toroudi H, Shafiee A, (2019), Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques;6(13):1900572. https://DOI: 10.1002/smll.201000233.
- ]39[. Rahmani, (2010), Effect of nanostructure alumina on adsorption of heavy metals. https://DOI: 10.1016/j.desal.2009.11.027.
- ]40[. Naumova, (2018), A pathway for mitotic chromosome formation. https://DOI: 10.1126/science. aao6135.
- ]41[. Mehmood A, Khan FSA, Mubarak NM, Mazari SA, Jatoi AS, Khalid M, (2021), Carbon and polymer-based magnetic nanocomposites for oil-spill remediation—a comprehensive review;28(39):54477-96. https://DOI: 10.1007/s11356-021-16045-0
- ]42[. Sonawane GH, Patil SP, Sonawane SH; (2018), Nanocomposites and its applications. Applications of nanomaterials: Elsevier. p. 1-22. retrieved from https://link.springer.com/article/10.1007/s42114-023-00808-z
- ]43[. Bendaoued A, Messaoud M, Harzallah O, Bistac S, Salhi RJJoMR, (2022), Technology. Nano-TiO2 effect on thermal, rheological and structural properties of thermoplastic polypropylene nanocomposites; 17:2313-25. https://DOI: 10.1016/j.jmrt.2022.01.114.
- ]44[. Mokif LA, Jasim HK, Abdulhusain NAJMTP. (2022), Petroleum and oily wastewater treatment methods: a mini review; 49:2671-4. https://DOI: 10.5772/intechopen.109853.
- ]45[. Wang J, Zhuang SJCRiES, Technology. (2017), Removal of various pollutants from water and wastewater by modified chitosan adsorbents;47(23):2331-86. https://DOI: 10.1080/10643389.2017.1421845.
- ]46[. Russo T, Fucile P, Giacometti R, Sannino FJP. (2021), Sustainable removal of contaminants by biopolymers: a novel approach for wastewater treatment. Current state and future perspectives; 9(4):719. https://DOI: 10.3390/pr9040719.
- ]47[. Ahmad A, Sumathi S, Hameed BJWr. (2005), Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies;39(12): 2483-94. https://DOI: 10.1016/j.watres.2005.03.035.
- ]48[. Zaredost M, Rasoli M, editors. (2011), Compare the performance of three kinds of synthetic sorbent for the removal of oil pollution of the sea. Fourth National Conference on Safety Engineering and HSE Engineering. retrieved from https://ijogst.put.ac.ir/article_4792_25ab8aab3e25e512100d4863b70639f9.pdf
- ]49[. Roy AS, Yenn R, Singh AK, Boruah HPD, Saikia N, Deka MJAJoB.(2013), Bioremediation of crude oil contaminated tea plantation soil using two Pseudomonas aeruginosa strains AS 03 and NA 108; 12(19). retrieved from https://www.ajol.info/index.php/ajb/article/view/130116.
- ]50[. Jadid A, Shahsavari S, Seifkordi A, Yazdi AVJDoH. (2021), Adsorption of Phenol in Wastewater Using Nano Grapheme Oxide-Chitosan-Bentonite Absorbent;11(4): 368-80. https://DOI: 0.34172/doh.2020.44.
- ] 51[. Anjum H, Johari K, Appusamy A, Gnanasundaram N, Thanabalan MJJohm.(2019), Surface modification and characterization of carbonaceous adsorbents for the efficient removal of oil pollutants; 379:120673. https://DOI: 10.1016/j.jhazmat.2019.05.066
- ]52[. Othman M, Hussin SS, Rambli A, Zahid Z, editors. (2019), Equilibrium Isotherm Models for the Adsorption of Methylene Blue from Wastewater. Journal of Physics: Conference Series: IOP Publishing. https://DOI:10.1088/1742-6596/1366/1/012033.
- ]53[. Schwantes D, Casarin J, Pinheiro A, Pinheiro IG, Coelho GFJAJoAR. (2015), Removal of Cr (III) from contaminated water using industrial waste of the cassava as natural adsorbents; 10(46):4241-51. https://DOI: 10.5897/AJAR2015.9835.
- ]54[. Makertihartha I, Rizki Z, Zunita M, Dharmawijaya P, editors. (2017), Dyes removal from textile wastewater using graphene based nanofiltration. AIP Conference Proceedings: AIP Publishing. https://DOI: 10.3390/membranes11040269
- ]55[. Thakur K, Kandasubramanian B. (2019), Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. Journal of Chemical & Engineering Data;64(3):833-67https://DOI: 10.1021/acs.jced.8b01057