Digital and analog performance enhancement of nanotube heterojunctionless tunnel FET using core-shell gate technology
- Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
- Department of Electrical Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
Received: 2024-08-15
Revised: 2024-10-02
Accepted: 2024-10-11
Published 2025-04-01
Copyright (c) 2024 Behzad Rajabi, Mahdi Vadizadeh, Seyed Ali Sedigh Ziabari (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 88
Abstract
This paper introduces a nanotube heterojunctionless tunneling field-effect transistor (NT-HJLTFET) that combines core-shell gate technology with a Ga0.8In0.2As/Ga0.85In0.15Sb heterojunction to enhance device performance. The NT-HJLTFET achieves an ION/IOFF ratio of 9.84×10¹³, an average subthreshold slope (SS) of 9.4 mV/dec, ION of 6.4 mA, transconductance (gm) of 17.5 mS, and unit gain cutoff frequency (fT) of 42.7 THz. These results represent a significant improvement in performance, including a nearly two orders of magnitude increase in ION, gm, and fT compared to silicon-based nanotube junctionless tunneling field-effect transistor (NT-JLTFET). The NT-HJLTFET also exhibits a five orders of magnitude enhancement in ION/IOFF and a 76% improvement in SS. Additionally, the presence of defects is shown to decrease fT, impacting the device's high-frequency response. These findings suggest that the NT-HJLTFET is a promising candidate for use in both digital and analog applications in integrated circuits.
Keywords
- Heterojunction,
- TFET,
- Nonlocal BTBT,
- Transconductance,
- Work function
References
- Asra R., Shrivastava M., Murali K. V., Pandey R. K., Gossner H., & Rao V. R. (2011). A Tunnel FET for VDD Scaling Below 0.6 V With a CMOS-Comparable Performance. IEEE Transactions on Electron Devices, 58(7), 1855-1863. https://doi.org/10.1109/TED.2011.2140322
- Morris D. H., Avci U. E., Rios R., & Young I. A. (2014). Design of low voltage tunneling-FET logic circuits considering asymmetric conduction characteristics. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(4), 380-388. https://doi.org/10.1109/JETCAS.2014.2361054
- Shih C. H., & Dang Chien N. (2013). Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions. Journal of Applied Physics, 113(13). https://doi.org/10.1063/1.4795777
- Chander, S., Sinha, S. K., Chaudhary, R., & Goswami, R. (2022). Effect of noise components on L-shaped and T-shaped heterojunction tunnel field effect transistors. Semiconductor Science and Technology, 37(7), 075011. https://doi.org/ 10.1088/1361-6641/ac696e
- Chander, S., Sinha, S. K., & Chaudhary, R. (2022). Comprehensive review on electrical noise analysis of TFET structures. Superlattices and Microstructures, 161, 107101. https://doi.org/10.1016/j.spmi.2021.107101
- Chander, S., Sinha, S. K., Chaudhary, R., & Singh, A. (2021). Ge-source based L-shaped tunnel field effect transistor for low power switching application. Silicon, 1-14.. https://doi.org/10.1007/s12633-021-01475-9
- Ghosh B., Bal P., & Mondal P. (2013). A junctionless tunnel field effect transistor with low subthreshold slope. Journal of Computational Electronics, 12, 428-436. https://doi.org/10.1007/s10825-013-0450-2
- Abedini M., Sedigh Ziabari S. A., & Eskandarian A. (2019). Representation of an improved heterostructure junctionless tunneling FET based on the drain/gate oxide and hetero-dielectric engineering. Journal of Electronic Materials, 48, 5865-5874. https://doi.org/10.1007/s11664-019-07335-y
- Vadizadeh M. (2018). Characteristics of GaAs/GaSb tunnel field-effect transistors without doping junctions: numerical studies. Journal of Computational Electronics, 17, 745-755. https://doi.org/10.1007/s10825-018-1136-6
- Ahangari Z. (2018). Performance investigation of a semi‐junctionless type II heterojunction tunnel field effect transistor in nanoscale regime. Micro & Nano Letters, 13(8), 1165-1169. https://doi.org/10.1049/mnl.2017.0877
- Chander, S., Sinha, S. K., & Chaudhary, R. (2024). Simulation study of multi-source hetero-junction tfet-based capacitor less 1t dram for low power applications. Materials Science and Engineering: B, 300, 117080. https://doi.org/10.1016/j.mseb.2023.117080
- Asthana P. K., Ghosh B., Goswami Y., & Tripathi B. M. M. (2014). High-speed and low-power ultradeep-submicrometer III-V heterojunctionless tunnel field-effect transistor. IEEE Transactions on Electron Devices, 61(2), 479-486. https://doi.org/10.1109/TED.2013.2295238
- Ahangari Z. (2019). Performance investigation of steep-slope core–shell nanotube indium nitride electron–hole bilayer tunnel field effect transistor. Applied Physics A, 125(6), 405. https://doi.org/10.1007/s00339-019-2700-z
- Kumar P., & Raj B. (2023). Design and simulation of junctionless nanowire tunnel field effect transistor for highly sensitive biosensor. Microelectronics Journal, 137, 105826. https://doi.org/10.1016/j.mejo.2023.105826
- Barik R., Dhar R. S., Awwad F., & Hussein M. I. (2023). Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances. Scientific reports, 13(1), 11415. https://doi.org/10.1038/s41598-023-38239-x
- Colinge J. P., Lee C. W., Afzalian A., Akhavan N. D., Yan R., Ferain I., ... & Murphy, R. (2010). Nanowire transistors without junctions. Nature nanotechnology, 5(3), 225-229. https://doi.org/10.1038/nnano.2010.15
- Hanna A. N., Fahad H. M., & Hussain M. M. (2015). InAs/Si hetero-junction nanotube tunnel transistors. Scientific reports, 5(1), 9843. https://doi.org/10.1038/srep09843
- Pown M., & Lakshmi B. (2016). Investigation of ft and fmax in Si and Si1–xGex based single and dual material double-gate Tunnel FETs for RF applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 025006. https://doi.org/10.1088/2043-6262/7/2/025006
- Vladimirescu A., Amara A., & Anghel, C. (2012). An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electronics, 70, 67-72. https://doi.org/10.1016/j.sse.2011.11.009
- Kumar P., Sharma S. K., & BalwinderRaj. (2021). Comparative analysis of nanowire tunnel field effect transistor for biosensor applications. Silicon, 13(11), 4067-4074. https://doi.org/10.1007/s12633-020-00718-5
- Soni D., & Sharma D. (2019). Design of NW TFET biosensor for enhanced sensitivity and sensing speed by using cavity extension and additional source electrode. Micro & Nano Letters, 14(8), 901-905. https://doi.org/10.1049/mnl.2018.5733
- Musalgaonkar G., Sahay S., Saxena R. S., & Kumar M. J. (2019). Nanotube tunneling FET with a core source for ultrasteep subthreshold swing: A simulation study. IEEE Transactions on Electron Devices, 66(10), 4425-4432. https://doi.org/10.1109/TED.2019.2933756
- Rajendiran P., & Nisha Justeena A. (2023). Structural Process Variation on Silicon Nanotube Tunnel Field-Effect Transistor. Silicon, 15(16), 7149-7156. https://doi.org/10.1007/s12633-023-02575-4
- Xu L., Wu G., Li P., & Cheng T. (2023). Modeling threshold voltage and drain-induced barrier lowering effect of opposite doping core–shell channel surrounding-gate junctionless MOSFET. Microelectronics Journal, 139, 105830. https://doi.org/10.1016/j.mejo.2023.105830
- Sadeghi B., Vahdati R. A. R. (2012). Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube. Applied surface science, 258(7), 3086-3088. https://doi.org/10.1016/j.apsusc.2011.11.042
- Molaei Imen Abadi R., & Sedigh Ziabari S. A. (2016). Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Applied Physics A, 122, 1-7. https://doi.org/10.1007/s00339-016-0151-3
- Singh S., & Chaudhary T. (2022). Performance and comparative analysis of heterojunction structure based GAA-NWTFET for low power applications. Silicon, 14(15), 9813-9820. https://doi.org/10.1007/s12633-021-01614-2
- Tripathy M. R., Singh A. K., Samad A., Chander S., Baral K., Singh P. K., & Jit, S. (2020). Device and circuit-level assessment of GaSb/Si heterojunction vertical tunnel-FET for low-power applications. IEEE Transactions on Electron Devices, 67(3), 1285-1292. https://doi.org/10.1109/TED.2020.2964428
- Levinshtein, M. S. Y. P. M. (Ed.). (1997). Handbook series on semiconductor parameters (Vol. 1). World Scientific. ISBN 981-02-1420-0
- Rajabi B., & Vadizadeh M. (2021). Investigation of the impact of mole-fraction on the digital benchmarking parameters as well as sensitivity in Ga X In 1− X As/Ga Y In 1− Y Sb vertical heterojunctionless tunneling field effect transistor. International Journal of Modern Physics B, 35(12), 2150161. https://doi.org/10.1142/S0217979221501617
- Ghosh B., & Akram M. W. (2013). Junctionless tunnel field effect transistor. IEEE electron device letters, 34(5), 584-586. https://doi.org/10.1109/LED.2013.2253752
- Vadizadeh M. (2019). Junctionless field effect diode (JL-FED): A first-principles study. ECS Journal of Solid State Science and Technology, 8(6), M60. https://doi.org/10.1149/2.0151906jss
- Ramkumar K., & Ramakrishnan V. N. (2022). Performance analysis of germanium-silicon vertical tunnel field-effect transistors (Ge-Si-VTFETs) for analog/RF applications. Silicon, 14(16), 10603-10612. https://doi.org/10.1007/s12633-022-01802-8
- Kumar K., Kumar A., Kumar V., & Sharma S. C. (2023). Comparative investigation of band gap and gate metal engineered novel Si0. 2Ge0. 8/GaAs charge plasma-based JLTFET for improved electrical performance. Silicon, 15(11), 4689-4702. https://doi.org/10.1007/s12633-023-02387-6
- Fallahnejad M., Amini A., Khodabakhsh A., & Vadizadeh M. (2022). High-speed SOI junctionless transistor based on hybrid heterostructure of Si/Si0. 5Ge0. 5 and asymmetric spacers with outstanding analog/RF parameters. Applied Physics A, 128(1), 47. https://doi.org/10.1007/s00339-021-05153-w
- Baryshnikova M., Mols Y., Ishii Y., Alcotte R., Han H., Hantschel T., ... & Kunert B. (2020). Nano-ridge engineering of GaSb for the integration of InAs/GaSb heterostructures on 300 mm (001) Si. Crystals, 10(4), 330. https://doi.org/10.3390/cryst10040330
- Jasik A., Sankowska I., Wawro A., Ratajczak J., Smoczyński D., & Czuba K. (2019). GaSb layers with low defect density deposited on (001) GaAs substrate in two-dimensional growth mode using molecular beam epitaxy. Current Applied Physics, 19(4), 542-547. https://doi.org/10.1016/j.cap.2019.02.012