10.57647/j.ijnd.2025.1602.13

Digital and analog performance enhancement of nanotube heterojunctionless tunnel FET using core-shell gate technology

  1. Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
  2. Department of Electrical Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
Digital and analog performance enhancement of nanotube heterojunctionless tunnel FET using core-shell gate technology

Received: 2024-08-15

Revised: 2024-10-02

Accepted: 2024-10-11

Published 2025-04-01

How to Cite

Rajabi, B., Vadizadeh, M., & Sedigh Ziabari , S. A. (2025). Digital and analog performance enhancement of nanotube heterojunctionless tunnel FET using core-shell gate technology. International Journal of Nano Dimension, 16(2 (April 2025). https://doi.org/10.57647/j.ijnd.2025.1602.13

PDF views: 88

Abstract

This paper introduces a nanotube heterojunctionless tunneling field-effect transistor (NT-HJLTFET) that combines core-shell gate technology with a Ga0.8In0.2As/Ga0.85In0.15Sb heterojunction to enhance device performance. The NT-HJLTFET achieves an ION/IOFF ratio of 9.84×10¹³, an average subthreshold slope (SS) of 9.4 mV/dec, ION of 6.4 mA, transconductance (gm) of 17.5 mS, and unit gain cutoff frequency (fT) of 42.7 THz. These results represent a significant improvement in performance, including a nearly two orders of magnitude increase in ION, gm, and fT compared to silicon-based nanotube junctionless tunneling field-effect transistor (NT-JLTFET). The NT-HJLTFET also exhibits a five orders of magnitude enhancement in ION/IOFF and a 76% improvement in SS. Additionally, the presence of defects is shown to decrease fT, impacting the device's high-frequency response. These findings suggest that the NT-HJLTFET is a promising candidate for use in both digital and analog applications in integrated circuits.

Keywords

  • Heterojunction,
  • TFET,
  • Nonlocal BTBT,
  • Transconductance,
  • Work function

References

  1. Asra R., Shrivastava M., Murali K. V., Pandey R. K., Gossner H., & Rao V. R. (2011). A Tunnel FET for VDD Scaling Below 0.6 V With a CMOS-Comparable Performance. IEEE Transactions on Electron Devices, 58(7), 1855-1863. https://doi.org/10.1109/TED.2011.2140322
  2. Morris D. H., Avci U. E., Rios R., & Young I. A. (2014). Design of low voltage tunneling-FET logic circuits considering asymmetric conduction characteristics. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(4), 380-388. https://doi.org/10.1109/JETCAS.2014.2361054
  3. Shih C. H., & Dang Chien N. (2013). Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions. Journal of Applied Physics, 113(13). https://doi.org/10.1063/1.4795777
  4. Chander, S., Sinha, S. K., Chaudhary, R., & Goswami, R. (2022). Effect of noise components on L-shaped and T-shaped heterojunction tunnel field effect transistors. Semiconductor Science and Technology, 37(7), 075011. https://doi.org/ 10.1088/1361-6641/ac696e
  5. Chander, S., Sinha, S. K., & Chaudhary, R. (2022). Comprehensive review on electrical noise analysis of TFET structures. Superlattices and Microstructures, 161, 107101. https://doi.org/10.1016/j.spmi.2021.107101
  6. Chander, S., Sinha, S. K., Chaudhary, R., & Singh, A. (2021). Ge-source based L-shaped tunnel field effect transistor for low power switching application. Silicon, 1-14.. https://doi.org/10.1007/s12633-021-01475-9
  7. Ghosh B., Bal P., & Mondal P. (2013). A junctionless tunnel field effect transistor with low subthreshold slope. Journal of Computational Electronics, 12, 428-436. https://doi.org/10.1007/s10825-013-0450-2
  8. Abedini M., Sedigh Ziabari S. A., & Eskandarian A. (2019). Representation of an improved heterostructure junctionless tunneling FET based on the drain/gate oxide and hetero-dielectric engineering. Journal of Electronic Materials, 48, 5865-5874. https://doi.org/10.1007/s11664-019-07335-y
  9. Vadizadeh M. (2018). Characteristics of GaAs/GaSb tunnel field-effect transistors without doping junctions: numerical studies. Journal of Computational Electronics, 17, 745-755. https://doi.org/10.1007/s10825-018-1136-6
  10. Ahangari Z. (2018). Performance investigation of a semi‐junctionless type II heterojunction tunnel field effect transistor in nanoscale regime. Micro & Nano Letters, 13(8), 1165-1169. https://doi.org/10.1049/mnl.2017.0877
  11. Chander, S., Sinha, S. K., & Chaudhary, R. (2024). Simulation study of multi-source hetero-junction tfet-based capacitor less 1t dram for low power applications. Materials Science and Engineering: B, 300, 117080. https://doi.org/10.1016/j.mseb.2023.117080
  12. Asthana P. K., Ghosh B., Goswami Y., & Tripathi B. M. M. (2014). High-speed and low-power ultradeep-submicrometer III-V heterojunctionless tunnel field-effect transistor. IEEE Transactions on Electron Devices, 61(2), 479-486. https://doi.org/10.1109/TED.2013.2295238
  13. Ahangari Z. (2019). Performance investigation of steep-slope core–shell nanotube indium nitride electron–hole bilayer tunnel field effect transistor. Applied Physics A, 125(6), 405. https://doi.org/10.1007/s00339-019-2700-z
  14. Kumar P., & Raj B. (2023). Design and simulation of junctionless nanowire tunnel field effect transistor for highly sensitive biosensor. Microelectronics Journal, 137, 105826. https://doi.org/10.1016/j.mejo.2023.105826
  15. Barik R., Dhar R. S., Awwad F., & Hussein M. I. (2023). Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances. Scientific reports, 13(1), 11415. https://doi.org/10.1038/s41598-023-38239-x
  16. Colinge J. P., Lee C. W., Afzalian A., Akhavan N. D., Yan R., Ferain I., ... & Murphy, R. (2010). Nanowire transistors without junctions. Nature nanotechnology, 5(3), 225-229. https://doi.org/10.1038/nnano.2010.15
  17. Hanna A. N., Fahad H. M., & Hussain M. M. (2015). InAs/Si hetero-junction nanotube tunnel transistors. Scientific reports, 5(1), 9843. https://doi.org/10.1038/srep09843
  18. Pown M., & Lakshmi B. (2016). Investigation of ft and fmax in Si and Si1–xGex based single and dual material double-gate Tunnel FETs for RF applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 025006. https://doi.org/10.1088/2043-6262/7/2/025006
  19. Vladimirescu A., Amara A., & Anghel, C. (2012). An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electronics, 70, 67-72. https://doi.org/10.1016/j.sse.2011.11.009
  20. Kumar P., Sharma S. K., & BalwinderRaj. (2021). Comparative analysis of nanowire tunnel field effect transistor for biosensor applications. Silicon, 13(11), 4067-4074. https://doi.org/10.1007/s12633-020-00718-5
  21. Soni D., & Sharma D. (2019). Design of NW TFET biosensor for enhanced sensitivity and sensing speed by using cavity extension and additional source electrode. Micro & Nano Letters, 14(8), 901-905. https://doi.org/10.1049/mnl.2018.5733
  22. Musalgaonkar G., Sahay S., Saxena R. S., & Kumar M. J. (2019). Nanotube tunneling FET with a core source for ultrasteep subthreshold swing: A simulation study. IEEE Transactions on Electron Devices, 66(10), 4425-4432. https://doi.org/10.1109/TED.2019.2933756
  23. Rajendiran P., & Nisha Justeena A. (2023). Structural Process Variation on Silicon Nanotube Tunnel Field-Effect Transistor. Silicon, 15(16), 7149-7156. https://doi.org/10.1007/s12633-023-02575-4
  24. Xu L., Wu G., Li P., & Cheng T. (2023). Modeling threshold voltage and drain-induced barrier lowering effect of opposite doping core–shell channel surrounding-gate junctionless MOSFET. Microelectronics Journal, 139, 105830. https://doi.org/10.1016/j.mejo.2023.105830
  25. Sadeghi B., Vahdati R. A. R. (2012). Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube. Applied surface science, 258(7), 3086-3088. https://doi.org/10.1016/j.apsusc.2011.11.042
  26. Molaei Imen Abadi R., & Sedigh Ziabari S. A. (2016). Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Applied Physics A, 122, 1-7. https://doi.org/10.1007/s00339-016-0151-3
  27. Singh S., & Chaudhary T. (2022). Performance and comparative analysis of heterojunction structure based GAA-NWTFET for low power applications. Silicon, 14(15), 9813-9820. https://doi.org/10.1007/s12633-021-01614-2
  28. Tripathy M. R., Singh A. K., Samad A., Chander S., Baral K., Singh P. K., & Jit, S. (2020). Device and circuit-level assessment of GaSb/Si heterojunction vertical tunnel-FET for low-power applications. IEEE Transactions on Electron Devices, 67(3), 1285-1292. https://doi.org/10.1109/TED.2020.2964428
  29. Levinshtein, M. S. Y. P. M. (Ed.). (1997). Handbook series on semiconductor parameters (Vol. 1). World Scientific. ISBN 981-02-1420-0
  30. Rajabi B., & Vadizadeh M. (2021). Investigation of the impact of mole-fraction on the digital benchmarking parameters as well as sensitivity in Ga X In 1− X As/Ga Y In 1− Y Sb vertical heterojunctionless tunneling field effect transistor. International Journal of Modern Physics B, 35(12), 2150161. https://doi.org/10.1142/S0217979221501617
  31. Ghosh B., & Akram M. W. (2013). Junctionless tunnel field effect transistor. IEEE electron device letters, 34(5), 584-586. https://doi.org/10.1109/LED.2013.2253752
  32. Vadizadeh M. (2019). Junctionless field effect diode (JL-FED): A first-principles study. ECS Journal of Solid State Science and Technology, 8(6), M60. https://doi.org/10.1149/2.0151906jss
  33. Ramkumar K., & Ramakrishnan V. N. (2022). Performance analysis of germanium-silicon vertical tunnel field-effect transistors (Ge-Si-VTFETs) for analog/RF applications. Silicon, 14(16), 10603-10612. https://doi.org/10.1007/s12633-022-01802-8
  34. Kumar K., Kumar A., Kumar V., & Sharma S. C. (2023). Comparative investigation of band gap and gate metal engineered novel Si0. 2Ge0. 8/GaAs charge plasma-based JLTFET for improved electrical performance. Silicon, 15(11), 4689-4702. https://doi.org/10.1007/s12633-023-02387-6
  35. Fallahnejad M., Amini A., Khodabakhsh A., & Vadizadeh M. (2022). High-speed SOI junctionless transistor based on hybrid heterostructure of Si/Si0. 5Ge0. 5 and asymmetric spacers with outstanding analog/RF parameters. Applied Physics A, 128(1), 47. https://doi.org/10.1007/s00339-021-05153-w
  36. Baryshnikova M., Mols Y., Ishii Y., Alcotte R., Han H., Hantschel T., ... & Kunert B. (2020). Nano-ridge engineering of GaSb for the integration of InAs/GaSb heterostructures on 300 mm (001) Si. Crystals, 10(4), 330. https://doi.org/10.3390/cryst10040330
  37. Jasik A., Sankowska I., Wawro A., Ratajczak J., Smoczyński D., & Czuba K. (2019). GaSb layers with low defect density deposited on (001) GaAs substrate in two-dimensional growth mode using molecular beam epitaxy. Current Applied Physics, 19(4), 542-547. https://doi.org/10.1016/j.cap.2019.02.012