Magnetic, magnetocaloric and optical properties of nano Gd3Ga5O12 garnet synthesized by citrate sol-gel method
- Department of Chemistry, Government Victoria College, Research Center under University of Calicut, Palakkad, India
- School of Physics, IISER Thiruvananthapuram, Vithura, Thiruvananthapuram, India
Received: 2024-08-16
Revised: 2024-10-25
Accepted: 2024-10-29
Published 2025-04-01
Copyright (c) 2024 Chalappurath Pattelath Reshmi, Analiparambil Ravindran Ramesh, Athira Suresh, Deepshikha Jaiswal-Naga (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 92
Abstract
Gd3Ga5O12 (GGG) nanoparticles with an average size around 50 nm were synthesized via citrate sol-gel method. Rietveld refinement confirmed the formation of a single-phase garnet structure. The optical properties characterized by UV-Vis absorption and photoluminescence spectra, exhibited bands centered at 300 nm and 436 nm, respectively. Magnetic measurements revealed paramagnetic behaviour above 15 K, as evidenced by the modified Curie-Weiss fitting with an effective magnetic moment of 13.86 μB per formula unit (F.U.). Arrott plots confirmed a second-order nature of the magnetic phase transition. Notably, the GGG nanoparticles displayed a significant magnetocaloric effect (MCE), with a maximum magnetic entropy change (-ΔSM) of 14.2 Jkg-1K-1 at 3.5 K under a 5 T field. These findings highlight the potential of GGG nanoparticles as refrigerants for low temperature magnetic refrigeration applications.
Keywords
- Arrott plot,
- Effective magnetic moment,
- Magnetocaloric effect (MCE),
- Nano GGG,
- Optical properties,
- Rietveld refinement
References
- Nizhankovskiy V. I., (2021), Comparison of magnetic moment and magnetostriction of Gd3Ga5O12 and Tb3Ga5O12 single crystals. J. Alloys. Compd. 852: 156938-156943. https://doi.org/10.1016/J.JALLCOM.2020.156938
- Karipbayev Z. T., Kumarbekov K., Manika I., Dauletbekova A., Kozlovskiy A. L., Sugak D., Ubizskii S. B., Akilbekov A., Suchikova Y., Popov A. I., (2022), Optical, structural, and mechanical properties of Gd3Ga5O12 single crystals irradiated with 84Kr+ ions. Physica Status Solidi (B) 259(8): 2100415. https://doi.org/https://doi.org/10.1002/pssb.202100415
- Maglia F., Buscaglia V., Gennari S., Ghigna P., Dapiaggi M., Speghini A., Bettinelli M., (2006), Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). J. Phys. Chem. B 110(13): 6561–6568. https://doi.org/10.1021/jp055713o
- Krsmanović R., Morozov V. A., Lebedev O. I., Polizzi S., Speghini A., Bettinelli M., Tendeloo G. Van, (2007), Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis. Nanotechnology 18(32): 325604. https://doi.org/10.1088/0957-4484/18/32/325604
- Cortés-Escobedo C. A., Bolarín-Miró A. M., Jesús F. S.-D., Valenzuela R., Juárez-Camacho E. P., Samperio-Gómez I. L., Ammar S., (2013), Y3Fe5O12 prepared by mechanosynthesis from different iron sources. Advances in Materials Physics and Chemistry .03(01): 41–46. https://doi.org/10.4236/ampc.2013.31a006
- Deghdak R., Bouchemat M., Lahoubi M., Pu S., Bouchemat T., Otmani H., (2017), Sensitive magnetic field sensor using 2D magnetic photonic crystal slab waveguide based on BIG/GGG structure. J. Comput. Electron. 16(2): 392–400. https://doi.org/10.1007/s10825-017-0965-z
- Parker S. G., Chang C. T. M., (1982), Properties of garnet materials for contiguous disk magnetic bubble memory devices. J. Electrochem. Soc. 129(2): 423–427. https://doi.org/10.1149/1.2123872
- Hosoe Y., Imura R., Suzuki R., Ikeda T., (1989), Garnet films for 64 Mb bubble memory devices. IEEE Tran.s Magn. 25(5): 4254–4256. https://doi.org/10.1109/20.42586
- Neupane D., Kramer N., Bhattarai R., Hanley C., Pathak A. K., Shen X., Karna S., Mishra S. R., (2023), Rare-earth doped Gd3−xRExFe5O12 (RE = Y, Nd, Sm, and Dy) garnet: structural, magnetic, magnetocaloric, and DFT study. Ceramics 6(4): 1937–1976. https://doi.org/10.3390/ceramics6040120
- Belov K. P., Nikitin S. A., Talalaeva E. V, Chernikova L. A., Kudryavtseva T. V, Tikhonov V. V, Ivanovskii V. I., (1972), Determination of exchange interaction of sublattices in gadolinium iron-garnet on the basis of the magnetocaloric effect. Sov. Phys. Jetp USSR34: 588-92.
- Pecharsky V. K., Pecharsky V. K., Gschneidner K. A., Gschneidner K. A., Pecharsky A. O., Tishin A. M., (2001), Thermodynamics of the magnetocaloric effect .Phys. Rev. B. Condens. Matter. Mater. Phys. 64(14): 1444061–14440613. https://doi.org/10.1103/PhysRevB.64.144406
- Klinar K., Law J. Y., Franco V., Moya X., Kitanovski A., (2024), Perspectives and energy applications of magnetocaloric, pyromagnetic, electrocaloric, and pyroelectric materials. Adv. Energy Mater. 2401739. https://doi.org/https://doi.org/10.1002/aenm.202401739
- Zhang Y., Na Y., Hao W., Gottschall T., Li L., (2024), Enhanced cryogenic magnetocaloric effect from 4f-3d exchange interaction in B-site ordered Gd2CuTiO6 Double Perovskite Oxide. Adv. Funct. Mater. 2409061. https://doi.org/https://doi.org/10.1002/adfm.202409061
- Lin J., Wang X., Chen F., Li H. F., Li L., (2025), Designing gadolinium-transition metals-based perovskite type high entropy oxides with good cryogenic magnetocaloric performances. J. Mater. Sci. Technol. 207: 317–323. https://doi.org/10.1016/J.JMST.2024.05.004
- Zhang Y., Hao W., Lin J., Li H. F., Li L., (2024), Geometrically frustrated Gd2Ti2O7 oxide: A comprehensive exploration of structural, magnetic, and magnetocaloric properties for cryogenic magnetic cooling applications. Acta Mater. 272: 119946. https://doi.org/10.1016/J.ACTAMAT.2024.119946
- Zhang Y., Hao W., Hu C., Wang X., Zhang X., Li L., (2023), Rare-earth-free Mn30Fe20−CuAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Funct. Mater. 33(52): 2310047. https://doi.org/https://doi.org/10.1002/adfm.202310047
- Zhang Y., Hao W., Shen J., Mo Z., Gottschall T., Li L., (2024), Investigation of the structural and magnetic properties of the GdCoC compound featuring excellent cryogenic magnetocaloric performance. Acta Mater. 276: 120128. https://doi.org/10.1016/J.ACTAMAT.2024.120128
- McMichael R. D., Ritter J. J., Shull R. D., (1993), Enhanced magnetocaloric effect in Gd3Ga5−xFexO12. J. Appl. Phys. 73(10): 6946–6948. https://doi.org/10.1063/1.352443
- McMichael R. D., Shull R. D., Swartzendruber L. J., Bennett L. H., Watson R. E., (1992), Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 111(1–2): 29–33. https://doi.org/10.1016/0304-8853(92)91049-Y
- Jin X., Zhao J., Gao L., Ma H., Haschuluu O., Zhu H., Li Q., Su T., Zhu H., Tegus O., Zhao J., (2024), Influence of high-pressure heat treatment on magnetocaloric effects and magnetic phase transition in single crystal Gd3Ga5O12. J. Rare Earths. https://doi.org/10.1016/J.JRE.2024.01.003
- Provenzano V., Li J., King T., Canavan E., Shirron P., DiPirro M., Shull R. D., (2003), Enhanced magnetocaloric effects in R3(Ga1−xFex)5O12 (R=Gd, Dy, Ho; 0https://doi.org/10.1016/S0304-8853(03)00470-0
- Phan M. H., Morales M. B., Chinnasamy C. N., Latha B., Harris V. G., Srikanth H., (2009), Magnetocaloric effect in bulk and nanostructured Gd3Fe5O12 materials. J. Phys. D. Appl. Phys. 42(11): 115007. https://doi.org/10.1088/0022-3727/42/11/115007
- Schiffer P., Ramirez A. P., Huse D. A., Gammel P. L., Yaron U., Bishop D. J., Valentino A. J., (1995), Frustration induced spin freezing in a site-ordered magnet: gadolinium gallium garnet. Phys Rev. Lett. 74: 2379-2382. https://link.aps.org/doi/10.1103/PhysRevLett.74.2379
- Ramirez A. P., (1994), Strongly geometrically frustrated magnets. Annu. Rev. Mater. Res. 24(24,): 453–480. https://doi.org/https://doi.org/10.1146/annurev.ms.24.080194.002321
- Numazawa T., Kamiya K., Okano T., Matsumoto K., (2003), Magnetocaloric effect in (DyxGd1−x)3Ga5O12 for adiabatic demagnetization refrigeration. Physica. B Condens. Matter. 329–333(II): 1656–1657. https://doi.org/10.1016/S0921-4526(02)02447-X
- Singh V., Sivaramaiah G., Singh N., Mohapatra M., Hakeem D. A., Pathak M. S., Rao J. L., (2018), EPR and optical investigation of ultraviolet-emitting Gd3Ga5O12 garnet. J Mater Sci: Mater Electron 29(2): 944–951. https://doi.org/10.1007/s10854-017-7992-1
- Ghimire K., Haneef H. F., Collins R. W., Podraza N. J., (2015), Optical properties of single-crystal Gd3Ga5O12 from the infrared to ultraviolet. Physica Status Solidi (B) 252(10): 2191–2198. https://doi.org/https://doi.org/10.1002/pssb.201552115
- Pang M., Lin J., (2005), Growth and optical properties of nanocrystalline Gd3Ga5O12:Ln (Ln=Eu3+,Tb3+,Er3+) powders and thin films via Pechini sol–gel process. J. Cryst. Growth 284(1–2): 262–269. https://doi.org/10.1016/J.JCRYSGRO.2005.07.007
- Hellstrom E. E., Ray II R. D., Zhang C., (1989), Preparation of gadolinium gallium garnet [Gd3Ga5O12] by solid-state reaction of the oxides. J. Am. Ceram. Soc. 72(8): 1376–1381. https://doi.org/https://doi.org/10.1111/j.1151-2916.1989.tb07656.x
- Jani P., Desai H., Madhukar B. S., Tanna A., (2022), Investigations of calcium ferrite nanoparticles synthesized by sol-gel auto combustion and solution mixture methods. Mater. Res. Innovations 26(3): 189–195. https://doi.org/10.1080/14328917.2021.1932318
- Tanna A. R., Sosa K. M., Joshi H. H., (2017), Study of superparamagnetic nano particles of Mn x Co1− x Fe2O4 ferrite system prepared by co-precipitation technique. Mater. Res. Express 4(11): 115010. https://doi.org/10.1088/2053-1591/aa9393
- Danks A. E., Hall S. R., Schnepp Z., (2016), The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3(2): 91–112. https://doi.org/10.1039/C5MH00260E
- A.C. Larson, R.B. Von Dreele, (2004), General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR.
- Ahmad Md. I., Bhattacharya S. S., (2009), Size effect on the lattice parameters of nanocrystalline anatase. Appl. Phys. Lett. 95(19): 191906. https://doi.org/10.1063/1.3261754
- Holder C. F., Schaak R. E., (2019), Tutorial on powder x-ray diffraction for characterizing nanoscale materials. ACS Nano 13(7): 7359–7365. https://doi.org/10.1021/acsnano.9b05157
- Mustapha S., Ndamitso M. M., Abdulkareem A. S., Tijani J. O., Shuaib D. T., Mohammed A. K., Sumaila A., (2019), Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 10(4): 045013. https://doi.org/10.1088/2043-6254/ab52f7
- Bleier G. C., Watt J., Simocko C. K., Lavin J. M., Huber D. L., (2018), Reversible magnetic agglomeration: A mechanism for thermodynamic control over nanoparticle size. Angew. Chem. 57(26): 7678–7681. https://doi.org/https://doi.org/10.1002/anie.201800959
- Lim EW, Feng R, (2012), Agglomeration of magnetic nanoparticles. J. Chem. Phy. 28;136(12) 124109. https://doi.org/10.1063/1.3697865
- Lü W., Zhou H., Chen G., Li J., Zhu Z., You Z., Tu C., (2009), Photoluminescence properties of neat and Dy3+-Doped Gd3Ga5O12 nanocrystals. J. Phy. Chem. C. 113(9): 3844–3849. https://doi.org/10.1021/jp8082369
- Cascales C., Fernández Díaz M. T., Monge M. A., (2000), Low-Temperature magnetic ordering in rare-earth copper germanates R2CuGe4O12, R = Ho, Er. Chem. Mater. 12(11): 3369–3375. https://doi.org/10.1021/cm0011209
- Jensen J., Mackintosh A. R., (1991), Rare Earth Magnetism Structures and Excitations. Clarendon press · Oxford. https://doi.org/10.1093/oso/9780198520276.001.0001
- Savaliya P. M., Ajudiya S. R., Sahoo J., Katba S., Tanna A. R., (2024), Structural and magnetic properties of GdFeO3 nanomaterial prepared through one-step sol-gel auto combustion technique. J. Solgel Sci. Technol. 110(2): 434–442. https://doi.org/10.1007/s10971-024-06367-z
- Petrenko O. A., Ritter C., Yethiraj M., McK Paul D., (1998), Investigation of the low-temperature spin-liquid behavior of the frustrated magnet gadolinium gallium garnet. Phys. Rev. Lett. 80(20): 4570–4573. https://doi.org/10.1103/PhysRevLett.80.4570
- Hov S., Bratsberg H., Skjeltorp A. T., (1980), Magnetic phase diagram of gadolinium gallium garnet. J. Magn. Magn. Mater. 15–18(PART 1): 455–456. https://doi.org/10.1016/0304-8853(80)91128-2
- Dunsiger S. R., Gardner J. S., Chakhalian J. A., Cornelius A. L., Jaime M., Kiefl R. F., Movshovich R., Macfarlane W. A., Miller R. I., Sonier J. E., Gaulin B. D., (2000), Low temperature spin dynamics of the geometrically frustrated antiferromagnetic garnet Gd3Ga5O 12. Phys. Rev. Lett. 85(16): 3504-3507. https://link.aps.org/doi/10.1103/PhysRevLett.85.3504
- Chogondahalli Muniraju N. K., Baral R., Tian Y., Li R., Poudel N., Gofryk K., Barišić N., Kiefer B., Ross J. H. Jr., Nair H. S., (2020), Magnetocaloric effect in a frustrated Gd-garnet with no long-range magnetic order. Inorg. Chem. 59(20): 15144–15153. https://doi.org/10.1021/acs.inorgchem.0c02074
- Reshmi C. P., Savitha Pillai S., Suresh K. G., Varma M. R., (2012), Magnetic and magnetocaloric properties of Gd3−xTbxGa5O12 (x=0, 1, 2, 3) garnets. J. Magn. Magn. Mater. 324(12): 1962–1966. https://doi.org/10.1016/J.JMMM.2012.01.030
- Kuz’min M. D., Tishin A. M., (1991), Magnetic refrigerants for the 4.2-20 K region: Garnets or perovskites? J. Phys. D. Appl. Phys. 24(11): 2039–2044. https://doi.org/10.1088/0022-3727/24/11/020
- Dunhui W., Shaolong T., Songling H., Jianrong Z., Youwei D., (2004), The magnetic phase transition and the low-field Arrott plots of (GdxDy1−x)Co2 compounds. J. Magn. Magn. Mater. 268(1–2): 70–74. https://doi.org/10.1016/S0304-8853(03)00474-8
- Franco V., Blázquez J. S., Conde A., (2006), Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett. 89(22): 222512. https://doi.org/10.1063/1.2399361