10.57647/j.ijnd.2025.1602.11

Synthesis of new ethyl cyanoacetate analogs catalyzed by nano-Fe3O4@EA

  1. Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
  2. Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, Iran
Synthesis of new ethyl cyanoacetate analogs catalyzed by nano-Fe3O4@EA

Received: 2024-07-18

Revised: 2024-11-02

Accepted: 2024-11-09

Published 2025-04-01

How to Cite

Moradhosseini, T., Mokhtary, M., Nikpassand, M., Kia , M., & Asadpour, L. (2025). Synthesis of new ethyl cyanoacetate analogs catalyzed by nano-Fe3O4@EA. International Journal of Nano Dimension, 16(2 (April 2025). https://doi.org/10.57647/j.ijnd.2025.1602.11

PDF views: 35

Abstract

In this research, we present an effective method for synthesizing new derivatives of ethyl cyanoacetate through base-free Knoevenagel condensation using ellagic acid-bonded magnetic nanoparticles (nano-Fe3O4@EA) as a catalyst. This method offers several advantages, including high yield, short reaction time, and simplicity, making it an attractive and efficient option in the emerging field of Knoevenagel condensation.

Keywords

  • Ethyl cyanoacetate,
  • Ellagic acid,
  • Formylarylsulfonates,
  • Knoevenagel condensation,
  • Magnetic nanoparticles

References

  1. Freeman, F., (1980), Properties and reactions of ylidenemalononitriles.Chem. Rev. 80: 329-350.https://pubs.acs.org/doi/10.1021/cr60326a004
  2. Kraus, G. A., Krolski, M. E., (1986), Synthesis of a precursor to quassimarin.J. Org. Chem. 51: 3347-3350.
  3. https://pubs.acs.org/doi/10.1021/jo00367a017
  4. Tietze, L. F., Rackelmann, N., (2004) Domino reactions in the synthesis of heterocyclic natural products and analogs, Pure Appl. Chem., 76:1967-1983.
  5. https://doi.org/10.1351/pac200476111967
  6. Knezevic, S., Ghafoor, A., Mehri, S., Barazi, A., Dziura, M., Trant, J. F., Dieni, C. A., (2021), Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism, PharmaNutrition 17: 100273.https://doi.org/10.1016/j.phanu.2021.100273
  7. Uddin, K.M., Sakib, M., Siraji, S., Uddin, R., Rahman, S., Alodhayb, A., Alibrahim, K.A., Kumer, A., Matin, M.M., Bhuiyan, M.M.H., (2023),Synthesis of new derivatives of benzylidinemalononitrile and ethyl 2-cyano-3-phenylacrylate: in silico anticancer evaluation, ACS Omega, 8: 25817- 2583.
  8. https://pubs.acs.org/doi/10.1021/acsomega.3c01123
  9. Rietveld, E.C., Garnaat, M.A., Seutter-Berlage, F., (1987), Bacterial mutagenicity of some methyl 2-cyanoacrylates and methyl 2-cyano-3-phenylacrylates, Mutat. Res., 188: 97-104.https://doi.org/10.1016/0165-1218(87)90097-8
  10. Rietveld, E. C., Engels, W. J. M., Smit, R., Seutter-Berlage, F., (1989), Metabolism of some methyl 2-cyano-3-phenyl-acrylates (methyl α-cyanocinnamates) in Rats, Xenobiotica, 19: 477-488. https://doi.org/10.3109/00498258909042287
  11. Teichmann, H., Thierfelder, W., (1978), Phosphous function addition to substituted olefins,Ger Patent (East), 129.
  12. Oba, H., Murayama, T., Otsuka, S., (1998), Photosensitive composition for electro-photography,US patent 4, 184, 871.
  13. Peters, A.T., Wild, M.S., Otsuka, S.J., (1994), Soc. Dyes Colour, 93:347.
  14. Schneider, E. M., Zeltner, M., Kränzlin, N., Grass, R. N., Stark, W. J., (2015), Base-free Knoevenagel condensation catalyzed by copper metal surfaces, Chem. Commun. 51: 10695.
  15. https://doi.org/10.1039/C5CC02541A
  16. Venkatanarayana, M., Dubey, P.K., (2012), L-Proline-catalyzed Knoevenagelcondensation: afacile, green synthesis of (E)-ethyl 2-cyano-3-(1H-indol-3-yl)acrylates and (E)-3-(1H-indol-3-yl)acrylonitriles, Synth. Commun., 42:1746-1759.
  17. Kada, R., Ilavský, D., Štetinová, J., Zalibera, L.,Paďour, J., (1994), Synthesis, reactions and spectral properties of ethyl esters of 2-cyano-3-(5-X-2-furyl)acrylic acid, Collect. Czechoslov. Chem. Commun. 59: 444-452.
  18. https://doi.org/10.1135/cccc19940444
  19. Xu, B., Liu, Z., Xu, Q., Han, X., Ma, X., Wang, J., Kannan, T., Ma, P., Wang, J., Niu, J., (2021), Polyoxomolybdates as efficient catalysts for Knoevenagel condensation reaction of benzaldehyde and ethyl cyanoacetate under mild condition, J. Mater. Sci., 56: 4654-4665.
  20. https://doi.org/10.1007/s10853-020-05562-x
  21. Almeida K. A., Cardoso, D., (2013), Basic activity of Y zeolite containing alkylammonium cations in Knoevenagel condensation, Catal. Today, 213: 122–126.
  22. https://doi.org/ 10.1016/J.CATTOD.2013.03.011
  23. F. Hajizadeh, B. Maleki, F. MohammadiZonoz, A. Amiri, Application of structurally enhanced magnetite cored polyamidoamine dendrimer for Knoevenagel condensation, (2021), J. Iran. Chem. Soc., 18:793–804.
  24. https://doi.org/10.1007/s13738-020-02071-1.
  25. S. Arbabi Jam, Y. Sarrafi, B. Maleki, (2024) Immobilization of ionic liquid–triethanolammonium bicarbonate on magnetic nanoparticles as an efficient catalyst for knovenegel condensation, Polycyclic Aromat. Compd., 44: 4364-4375.
  26. https://doi.org/ 10.1080/10406638.2023.2247129.
  27. S. Falah, M. Soleiman-Beigi, H. Kohzadi, (2020) Potassium Natural Asphalt Sulfonate (K- NAS): Synthesis and characterization as a new recyclable solid basic nanocatalyst and its application in the formation of carbon–carbon bonds, ApplOrganomet. Chem., 34:e5840.
  28. https://doi.org/10.1002/aoc.5840.
  29. F. Ghobakhloo,D. Azarifar,M. Mohammadi, H. Keypour, H. Zeynali, (2022) Copper(II) schiff-base complex modified UiO-66-NH2(Zr) metal−organic framework catalysts for Knoevenagel condensation−Michael addition−cyclization reactions, Inorg. Chem. 61: 4825−4841.
  30. https://doi.org/10.1021/acs.inorgchem.1c03284.
  31. S.Nosratollahi, M.Soleiman-Beigi, M.Norouzi, (2024) A chemoselective and one-pot method for the synthesis of unsymmetrical secondary amines via coupling reaction ofammonia and aryl(alkyl) halides catalyzed by MNP@IAH@Cu-IL as a bifunctional nanocatalyst, Appl.Organomet. Chem. 38: e7462.
  32. https://doi.org/10.1002/aoc.7462.
  33. M. Borzooei, M. Norouzi,M. Mohammadi, (2015)Construction of a Dual-Functionalized Acid−Base Nanocatalyst via HEPES Buffer Functionalized on Fe3O4 as a Reusable Catalyst for Annulation Reactions, [20] N. Azgomi, M. Mokhtary, J. Mol. Catal. A: Chem., 398: 58–64.
  34. https://doi.org/10.1021/acs.langmuir.4c00563.
  35. H. Kohzadi, M. Soleiman-Beigi, (2021) XPS and structural studies of Fe3O4-PTMS-NAS@ Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds, Sci. Rep.,11:24508.
  36. https://doi.org/10.1038/s41598-021-04111-z.
  37. A. Nikseresht, M. Karami, M. Mohammadi, (2024) Phosphotungsticacid-supported Hercynite: amagnetic nanocomposite catalyst for the selective esterification of chloroaceticacid, Langmuir 40, 35, 18512–18524.
  38. https://doi.org/10.1021/acs.langmuir.4c01763.
  39. M. Mokhtary, (2016)Recent advances in catalysts immobilized on magnetic nanoparticles, J. Iran. Chem. Soc., 13: 1827-1845.
  40. https://link.springer.com/article/10.1007/s13738-016-0900-4.
  41. M. Mokhtary, M. Torabi, (2017) Nano magnetite (Fe3O4), an efficient and robust catalyst for the one-pot synthesis of 1-(aryl(piperidin-1-yl)methyl)naphthalene-2-ol and 1-(α-amido alkyl)-2-naphthol under ultrasound irradiation, J. Saudi Chem. Soc., 21:S299-S304.
  42. https://doi.org/10.1016/j.jscs.2014.03.009.
  43. A. Gholami, M. Mokhtary, M. Nikpassand, (2020)Glycolic acid‐supported cobalt ferrite‐catalyzed one‐pot synthesis of pyrimido[4,5‐b]quinoline and indenopyrido[2,3‐d]pyrimidine derivatives, Appl. Organomet. Chem., 34: e6007.
  44. https://doi.org/10.1002/aoc.6007.
  45. F. Haghighat, and M. Mokhtary, (2017)Preparation and Characterization of Polyvinylpyrrolidone/Magnetite Decorated Carboxylic Acid Functionalized Multi-Walled Carbon Nanotube (PVP/MWCNT-Fe3O4) Nanocomposite, J. Inorg. Organomet. Polym. Mater., 27: 779-787.
  46. https://link.springer.com/article/10.1007/s10904-017-0521-0.
  47. M. ForoughiKaldareh, M. Mokhtary, M. Nikpassand, (2020)Nicotinic acid‐supported cobalt ferrite‐catalyzed one‐pot synthesis of substituted chromeno[3,4‐b]quinolines, Appl. Organomet. Chem., 34: e5469.
  48. https://doi.org/10.1002/aoc.5469
  49. M. Masoumparast, M. Mokhtary, H. Kefayati, (2020)Preparation and characterization of polyvinylpyrrolidone/cobalt ferrite functionalized chitosan graphene oxide (CoFe2O4@CS@GO-PVP) nanocomposite, J. Polym. Eng., 40: 342-349.
  50. https://doi.org/10.1515/polyeng-2019-0331.
  51. S. Ghiassi, M. Mokhtary, S. Sedaghat, H. Kefayati, (2019)Preparation, and Antibacterial Activity of Chloroacetic Acid Immobilized on Chitosan Coated Iron Oxide Decorated Silver Nanoparticles as an Efficient Catalyst for the Synthesis of Hexahydroquinoline-3-Carboxamides, J. Inorg. Organomet. Polym. Mater., 29: 1972-1982.
  52. https://link.springer.com/article/10.1007/s10904-019-01156-6.
  53. B. Babaei, M. Mamaghani, M. Mokhtary, (2019) Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst, React. Kinet. Mech. Catal., 128: 379-394.
  54. https://link.springer.com/article/10.1007/s11144-019-01636-3.
  55. B. Babaei, M. Mamaghani, M. Mokhtary, (2023)Clean synthesis of propargylamines using novel magnetically recyclable silver nanocatalyst (AgMNPs), Polycycl, Aromat. Compd., 43, 396-408.
  56. https://www.tandfonline.com/doi/full/10.1080/10406638.2021.2015401.
  57. A. Gholami, M. Mokhtary, S. SetarehAttarseyedi, B. Masoumi, M. Mamaghani, (2024)Synthesis of Polyfunctionalized Furan Analogs Catalyzed by Chlorosulfonic Acid Immobilized Nano-Cobaltferrite, J. Clust. Sci., 35: 69-78.
  58. https://link.springer.com/article/10.1007/s10876-023-02462-3.
  59. D. Collado, E. Perez-Inestrosa, R. Suau, J. T. Lopez Navarrete, (2006) Regioselective hydroxylation of phenols by simultaneous photochemical generation of phenol cation-radical and hydroxyl radical, Tetrahedron 62 (2006) 2927–2935.
  60. https://doi.org/10.1016/j.tet.2006.01.003.
  61. K. Freudenberg, H. Hess, (1926) Ein Verfahrenzur Kennzeichnungverschiedenartiger Hydroxylgruppen. Seine Anwendung auf das Lignin. Justus LiebigsAnnalen der Chemie, 448: 121-133.
  62. https://doi.org/10.1002/jlac.19264480110.
  63. A. Sharma, P. Gogoi, (2017) 2-Formylarylsulfonate from aryne: a sequential reaction strategy for direct synthesis of ortho-hydroxyl-protected aryl aldehydes, ChemistrySelect, 2: 11801 –11805.
  64. https://doi.org/10.1002/slct.201702896
  65. F. M. Piller, A. Metzger, M. A. Schade, B.A. Haag, A. Gavryushin, P. Knochel, (2009) Preparation of polyfunctionalarylmagnesium, arylzinc, and benzylic zinc reagents by using magnesium in the presence of LiCl, Chem.–A Eur. J., 15: 192-7202.
  66. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.200900575.
  67. C. R. Reddy, N. N. Rao, B. Srikanth, (2010) Total synthesis of a diarylheptanoid, Rhoiptelol B. Eur. J. Org. Chem., 345-351.
  68. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.200901041.
  69. C. Nadler, A. Nadler, C. Hansen, U. Diederichsen, (2015) Aphotocleavable auxiliary for extended native chemical ligation. Eur. J. Org. Chem., 3095-3102.
  70. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.201500033.
  71. Azgomi N, Mokhtary M. (2015), Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst forthe synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions, J. Mol. Catal. A: Chem. 398: 58–64.
  72. https://doi.org/10.1016/j.molcata.2014.11.018.