Synthesis of new ethyl cyanoacetate analogs catalyzed by nano-Fe3O4@EA
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
- Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, Iran
Received: 2024-07-18
Revised: 2024-11-02
Accepted: 2024-11-09
Published 2025-04-01
Copyright (c) 2024 Tahereh Moradhosseini, Masoud Mokhtary, Mohammad Nikpassand, Majid Kia , Leila Asadpour (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 35
Abstract
In this research, we present an effective method for synthesizing new derivatives of ethyl cyanoacetate through base-free Knoevenagel condensation using ellagic acid-bonded magnetic nanoparticles (nano-Fe3O4@EA) as a catalyst. This method offers several advantages, including high yield, short reaction time, and simplicity, making it an attractive and efficient option in the emerging field of Knoevenagel condensation.
Keywords
- Ethyl cyanoacetate,
- Ellagic acid,
- Formylarylsulfonates,
- Knoevenagel condensation,
- Magnetic nanoparticles
References
- Freeman, F., (1980), Properties and reactions of ylidenemalononitriles.Chem. Rev. 80: 329-350.https://pubs.acs.org/doi/10.1021/cr60326a004
- Kraus, G. A., Krolski, M. E., (1986), Synthesis of a precursor to quassimarin.J. Org. Chem. 51: 3347-3350.
- https://pubs.acs.org/doi/10.1021/jo00367a017
- Tietze, L. F., Rackelmann, N., (2004) Domino reactions in the synthesis of heterocyclic natural products and analogs, Pure Appl. Chem., 76:1967-1983.
- https://doi.org/10.1351/pac200476111967
- Knezevic, S., Ghafoor, A., Mehri, S., Barazi, A., Dziura, M., Trant, J. F., Dieni, C. A., (2021), Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism, PharmaNutrition 17: 100273.https://doi.org/10.1016/j.phanu.2021.100273
- Uddin, K.M., Sakib, M., Siraji, S., Uddin, R., Rahman, S., Alodhayb, A., Alibrahim, K.A., Kumer, A., Matin, M.M., Bhuiyan, M.M.H., (2023),Synthesis of new derivatives of benzylidinemalononitrile and ethyl 2-cyano-3-phenylacrylate: in silico anticancer evaluation, ACS Omega, 8: 25817- 2583.
- https://pubs.acs.org/doi/10.1021/acsomega.3c01123
- Rietveld, E.C., Garnaat, M.A., Seutter-Berlage, F., (1987), Bacterial mutagenicity of some methyl 2-cyanoacrylates and methyl 2-cyano-3-phenylacrylates, Mutat. Res., 188: 97-104.https://doi.org/10.1016/0165-1218(87)90097-8
- Rietveld, E. C., Engels, W. J. M., Smit, R., Seutter-Berlage, F., (1989), Metabolism of some methyl 2-cyano-3-phenyl-acrylates (methyl α-cyanocinnamates) in Rats, Xenobiotica, 19: 477-488. https://doi.org/10.3109/00498258909042287
- Teichmann, H., Thierfelder, W., (1978), Phosphous function addition to substituted olefins,Ger Patent (East), 129.
- Oba, H., Murayama, T., Otsuka, S., (1998), Photosensitive composition for electro-photography,US patent 4, 184, 871.
- Peters, A.T., Wild, M.S., Otsuka, S.J., (1994), Soc. Dyes Colour, 93:347.
- Schneider, E. M., Zeltner, M., Kränzlin, N., Grass, R. N., Stark, W. J., (2015), Base-free Knoevenagel condensation catalyzed by copper metal surfaces, Chem. Commun. 51: 10695.
- https://doi.org/10.1039/C5CC02541A
- Venkatanarayana, M., Dubey, P.K., (2012), L-Proline-catalyzed Knoevenagelcondensation: afacile, green synthesis of (E)-ethyl 2-cyano-3-(1H-indol-3-yl)acrylates and (E)-3-(1H-indol-3-yl)acrylonitriles, Synth. Commun., 42:1746-1759.
- Kada, R., Ilavský, D., Štetinová, J., Zalibera, L.,Paďour, J., (1994), Synthesis, reactions and spectral properties of ethyl esters of 2-cyano-3-(5-X-2-furyl)acrylic acid, Collect. Czechoslov. Chem. Commun. 59: 444-452.
- https://doi.org/10.1135/cccc19940444
- Xu, B., Liu, Z., Xu, Q., Han, X., Ma, X., Wang, J., Kannan, T., Ma, P., Wang, J., Niu, J., (2021), Polyoxomolybdates as efficient catalysts for Knoevenagel condensation reaction of benzaldehyde and ethyl cyanoacetate under mild condition, J. Mater. Sci., 56: 4654-4665.
- https://doi.org/10.1007/s10853-020-05562-x
- Almeida K. A., Cardoso, D., (2013), Basic activity of Y zeolite containing alkylammonium cations in Knoevenagel condensation, Catal. Today, 213: 122–126.
- https://doi.org/ 10.1016/J.CATTOD.2013.03.011
- F. Hajizadeh, B. Maleki, F. MohammadiZonoz, A. Amiri, Application of structurally enhanced magnetite cored polyamidoamine dendrimer for Knoevenagel condensation, (2021), J. Iran. Chem. Soc., 18:793–804.
- https://doi.org/10.1007/s13738-020-02071-1.
- S. Arbabi Jam, Y. Sarrafi, B. Maleki, (2024) Immobilization of ionic liquid–triethanolammonium bicarbonate on magnetic nanoparticles as an efficient catalyst for knovenegel condensation, Polycyclic Aromat. Compd., 44: 4364-4375.
- https://doi.org/ 10.1080/10406638.2023.2247129.
- S. Falah, M. Soleiman-Beigi, H. Kohzadi, (2020) Potassium Natural Asphalt Sulfonate (K- NAS): Synthesis and characterization as a new recyclable solid basic nanocatalyst and its application in the formation of carbon–carbon bonds, ApplOrganomet. Chem., 34:e5840.
- https://doi.org/10.1002/aoc.5840.
- F. Ghobakhloo,D. Azarifar,M. Mohammadi, H. Keypour, H. Zeynali, (2022) Copper(II) schiff-base complex modified UiO-66-NH2(Zr) metal−organic framework catalysts for Knoevenagel condensation−Michael addition−cyclization reactions, Inorg. Chem. 61: 4825−4841.
- https://doi.org/10.1021/acs.inorgchem.1c03284.
- S.Nosratollahi, M.Soleiman-Beigi, M.Norouzi, (2024) A chemoselective and one-pot method for the synthesis of unsymmetrical secondary amines via coupling reaction ofammonia and aryl(alkyl) halides catalyzed by MNP@IAH@Cu-IL as a bifunctional nanocatalyst, Appl.Organomet. Chem. 38: e7462.
- https://doi.org/10.1002/aoc.7462.
- M. Borzooei, M. Norouzi,M. Mohammadi, (2015)Construction of a Dual-Functionalized Acid−Base Nanocatalyst via HEPES Buffer Functionalized on Fe3O4 as a Reusable Catalyst for Annulation Reactions, [20] N. Azgomi, M. Mokhtary, J. Mol. Catal. A: Chem., 398: 58–64.
- https://doi.org/10.1021/acs.langmuir.4c00563.
- H. Kohzadi, M. Soleiman-Beigi, (2021) XPS and structural studies of Fe3O4-PTMS-NAS@ Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds, Sci. Rep.,11:24508.
- https://doi.org/10.1038/s41598-021-04111-z.
- A. Nikseresht, M. Karami, M. Mohammadi, (2024) Phosphotungsticacid-supported Hercynite: amagnetic nanocomposite catalyst for the selective esterification of chloroaceticacid, Langmuir 40, 35, 18512–18524.
- https://doi.org/10.1021/acs.langmuir.4c01763.
- M. Mokhtary, (2016)Recent advances in catalysts immobilized on magnetic nanoparticles, J. Iran. Chem. Soc., 13: 1827-1845.
- https://link.springer.com/article/10.1007/s13738-016-0900-4.
- M. Mokhtary, M. Torabi, (2017) Nano magnetite (Fe3O4), an efficient and robust catalyst for the one-pot synthesis of 1-(aryl(piperidin-1-yl)methyl)naphthalene-2-ol and 1-(α-amido alkyl)-2-naphthol under ultrasound irradiation, J. Saudi Chem. Soc., 21:S299-S304.
- https://doi.org/10.1016/j.jscs.2014.03.009.
- A. Gholami, M. Mokhtary, M. Nikpassand, (2020)Glycolic acid‐supported cobalt ferrite‐catalyzed one‐pot synthesis of pyrimido[4,5‐b]quinoline and indenopyrido[2,3‐d]pyrimidine derivatives, Appl. Organomet. Chem., 34: e6007.
- https://doi.org/10.1002/aoc.6007.
- F. Haghighat, and M. Mokhtary, (2017)Preparation and Characterization of Polyvinylpyrrolidone/Magnetite Decorated Carboxylic Acid Functionalized Multi-Walled Carbon Nanotube (PVP/MWCNT-Fe3O4) Nanocomposite, J. Inorg. Organomet. Polym. Mater., 27: 779-787.
- https://link.springer.com/article/10.1007/s10904-017-0521-0.
- M. ForoughiKaldareh, M. Mokhtary, M. Nikpassand, (2020)Nicotinic acid‐supported cobalt ferrite‐catalyzed one‐pot synthesis of substituted chromeno[3,4‐b]quinolines, Appl. Organomet. Chem., 34: e5469.
- https://doi.org/10.1002/aoc.5469
- M. Masoumparast, M. Mokhtary, H. Kefayati, (2020)Preparation and characterization of polyvinylpyrrolidone/cobalt ferrite functionalized chitosan graphene oxide (CoFe2O4@CS@GO-PVP) nanocomposite, J. Polym. Eng., 40: 342-349.
- https://doi.org/10.1515/polyeng-2019-0331.
- S. Ghiassi, M. Mokhtary, S. Sedaghat, H. Kefayati, (2019)Preparation, and Antibacterial Activity of Chloroacetic Acid Immobilized on Chitosan Coated Iron Oxide Decorated Silver Nanoparticles as an Efficient Catalyst for the Synthesis of Hexahydroquinoline-3-Carboxamides, J. Inorg. Organomet. Polym. Mater., 29: 1972-1982.
- https://link.springer.com/article/10.1007/s10904-019-01156-6.
- B. Babaei, M. Mamaghani, M. Mokhtary, (2019) Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst, React. Kinet. Mech. Catal., 128: 379-394.
- https://link.springer.com/article/10.1007/s11144-019-01636-3.
- B. Babaei, M. Mamaghani, M. Mokhtary, (2023)Clean synthesis of propargylamines using novel magnetically recyclable silver nanocatalyst (AgMNPs), Polycycl, Aromat. Compd., 43, 396-408.
- https://www.tandfonline.com/doi/full/10.1080/10406638.2021.2015401.
- A. Gholami, M. Mokhtary, S. SetarehAttarseyedi, B. Masoumi, M. Mamaghani, (2024)Synthesis of Polyfunctionalized Furan Analogs Catalyzed by Chlorosulfonic Acid Immobilized Nano-Cobaltferrite, J. Clust. Sci., 35: 69-78.
- https://link.springer.com/article/10.1007/s10876-023-02462-3.
- D. Collado, E. Perez-Inestrosa, R. Suau, J. T. Lopez Navarrete, (2006) Regioselective hydroxylation of phenols by simultaneous photochemical generation of phenol cation-radical and hydroxyl radical, Tetrahedron 62 (2006) 2927–2935.
- https://doi.org/10.1016/j.tet.2006.01.003.
- K. Freudenberg, H. Hess, (1926) Ein Verfahrenzur Kennzeichnungverschiedenartiger Hydroxylgruppen. Seine Anwendung auf das Lignin. Justus LiebigsAnnalen der Chemie, 448: 121-133.
- https://doi.org/10.1002/jlac.19264480110.
- A. Sharma, P. Gogoi, (2017) 2-Formylarylsulfonate from aryne: a sequential reaction strategy for direct synthesis of ortho-hydroxyl-protected aryl aldehydes, ChemistrySelect, 2: 11801 –11805.
- https://doi.org/10.1002/slct.201702896
- F. M. Piller, A. Metzger, M. A. Schade, B.A. Haag, A. Gavryushin, P. Knochel, (2009) Preparation of polyfunctionalarylmagnesium, arylzinc, and benzylic zinc reagents by using magnesium in the presence of LiCl, Chem.–A Eur. J., 15: 192-7202.
- https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.200900575.
- C. R. Reddy, N. N. Rao, B. Srikanth, (2010) Total synthesis of a diarylheptanoid, Rhoiptelol B. Eur. J. Org. Chem., 345-351.
- https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.200901041.
- C. Nadler, A. Nadler, C. Hansen, U. Diederichsen, (2015) Aphotocleavable auxiliary for extended native chemical ligation. Eur. J. Org. Chem., 3095-3102.
- https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.201500033.
- Azgomi N, Mokhtary M. (2015), Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst forthe synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions, J. Mol. Catal. A: Chem. 398: 58–64.
- https://doi.org/10.1016/j.molcata.2014.11.018.