10.57647/j.ijnd.2025.1602.10

Synthesis and experimental study of TiO2 nanofluids for transformer applications

  1. Department of Mechanical Engineering, SR University, Warangal, India  AND  Department of Mechanical Engineering, Sasi Institute of Technology & Engineering, Tadepalligudem, India
  2. Department of Mechanical Engineering, SR University, Warangal, India
  3. Department of Mechanical Engineering, National Institute of Technology Warangal, Warangal, India
Synthesis and experimental study of TiO2 nanofluids for transformer applications

Received: 2024-08-29

Revised: 2024-11-02

Accepted: 2024-12-08

Published 2025-04-01

How to Cite

Sheik, S. B., Nagireddy, P. D., & Kupireddi, K. K. (2025). Synthesis and experimental study of TiO2 nanofluids for transformer applications. International Journal of Nano Dimension, 16(2 (April 2025). https://doi.org/10.57647/j.ijnd.2025.1602.10

PDF views: 66

Abstract

Transformers are essential in an electrical power system, and their efficiency and reliability are vital. The cooling and insulating properties of the fluids used in them are able to influence the performance of transformers drastically. The acceleration of Titanium Oxide (TiO2) nanoparticles in thermal and dielectric properties suggests promising advantages as a fashionable ingredient for the enhancement in characteristics of oil-base fluids to provide new-generation transformer oils. This study involves the production of TiO2 nanoparticles through the sol-gel method. The synthesized TiO2 nanoparticles have been characterized using XRD and SEM analysis. The produced nanoparticles are introduced into base fluids using two-step process. The transformer oil is selected as base fluid, to investigate the thermophysical and dielectric properties at different concentrations typically 0.35, 0.45, and 0.55 wt.% of titanium oxide (TiO2) nanoparticles with average particle diameter 37nm. Additionally, assessments are performed on the thermal conductivity, density, and dielectric values of transformer oil. The improvement of 36.84% at 2.5mm and 36.36% at 4mm electrode gap, respectively, in Breakdown Voltage (BDV) was identified when using TiO2 concentration at 0.45 wt% concentration. The maximum thermal conductivity enhancement shown at 0.55 wt% is 23.41%.

Keywords

  • Dielectric,
  • Nanofluids,
  • Thermo-physical,
  • Titanium dioxide,
  • Transformer Oil

References

  1. Abdullah Bin Afzal, Zulkarnain Ahmad Noorden, Ahmad Bin Afzal., (2022), A Simulation Study on Electrical and Thermal Properties of Nanofluids Based Mineral Oils for Potential Transformer Applications. IEEE Transactions on Dielectrics and Electrical Insulation, 29(6):2312-2319. https://doi.org/10.1109/tdei.2022.3206721
  2. A., J., Amalanathan., Ramanujam, Sarathi., Maciej, Zdanowski., (2023), A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers. Energies, 16(9):3662-3662. https://doi.org/10.3390/en16093662
  3. Rohith, Sangineni, Sisir, Kumar, Nayak., Marley, Becerra., (2023), Magnetic Profiling of Conducting, Semi-Conducting, and Insulating Nanoparticles and Their Nanofluids Possessing Potential Transformer Application. IEEE Transactions on Dielectrics and Electrical Insulation,30: 649-657. https://doi.org/10.1109/TDEI.2022.3224891
  4. Cristian Olmo., Cristina, Mendez., P., J., Quintanilla., Felix, Ortiz., Carlos, J., Renedo., Alfredo, Ortiz., (2022). Mineral and Ester Nanofluids as Dielectric Cooling Liquid for Power Transformers. Nanomaterials, 12(15):2723-2723. https://doi.org/10.3390/nano12152723
  5. R. H. M. Ali, M. F. Alam, K. A. Khan and S. Muzaffar, (2020), Thermo-electric Impact of Nano-Materials on Transformer Oil and Synthetic Ester Oil. IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), Sumy, Ukraine, 2020, pp. 02IT06-1-02IT06-5, https://doi.org/10.1109/NAP51477.2020.9309576.
  6. N. Kishore., H.N., Vidyasagar., D.K., Ramesha., (2019). Preparation and Characterization of Transformer Oil Based Nano Fluids. Applied Mechanics and Materials, 895:218-223. https://doi.org/10.4028/www.scientific.net/amm.895.218
  7. Mikhail A., Sheremet., (2021), Applications of Nanofluids. Nanomaterials, 11(7):1716. https://doi.org/10.3390/nano11071716
  8. Wagd Adnan Ajeeb., S., M., Sohel, Murshed., (2023), Characterization of Thermophysical and Electrical Properties of SiC and BN Nanofluids. Energies,16(9):3768-3768. https://doi.org/10.3390/en16093768
  9. Suhaib Ahmad Khan., Mohd, Tariq. Asfar, Ali, Khan., Basem, Alamri., Lucian, Mihet-Popa, (2022), Assessment of Thermophysical Performance of Ester-Based Nanofluids for Enhanced Insulation Cooling in Transformers. Electronics,11(3):376-376. https://doi.org/10.3390/electronics11030376
  10. K. N. Koutras., Georgios, D., Peppas., T., Fetsis., Sokratis, N, Tegopoulos., V., P., Charalampakos., Apostolos, Kyritsis., A., G., Yiotis., Ioannis, F., Gonos., Eleftheria, C., Pyrgioti, (2022). Dielectric and Thermal Response of TiO2 and SiC Natural Ester Based Nanofluids for Use in Power Transformers. IEEE Access, 10:79222-79236. https://doi.org/10.1109/access.2022.3194516
  11. Waleed, S., Iqbal., M., Mekki., Waseeq, Ur, Rehman., Baber, Shahzad., U., Anwar., S., Mahmood., Md., Eman, Talukder, (2023), Electrical properties of TiO2/CO3O4 core/shell nanoparticles synthesized by sol-gel method. Journal of Nanomaterials and Biostructures, 18(1):403-410 https://doi.org/10.15251/djnb.2023.181.403
  12. Jamshed, W., (2021), Numerical investigation of MHD impact on Maxwell nanofluid. International Communications in Heat and Mass Transfer, 120, 104973 https://doi.org/10.1016/j.icheatmasstransfer.2020.104973
  13. Rahmat, Harianto., Salama, Manjang., Ikhlas, Kitta, (2022), Enhancement of AC electro-insulating liquid with rice bran oil-based TiO2 and Fe3O4 nanofluids as alternative transformer oil. Nucleation and Atmospheric Aerosols, AIP Conf. Proc. 2543, 040025, https://doi.org/10.1063/5.0094998
  14. Z. B. Siddique, S. Basu and P. Basak, (2021), Development of Graphene Oxide Dispersed Natural Ester Based Insulating Oil for Transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 28(4), pp. 1326-1333 https://doi.org/10.1109/TDEI.2021.009445
  15. Miloš, Šárpataky., Juraj, Kurimský., M., Rajňák. Dielectric Fluids for Power Transformers with Special Emphasis on Biodegradable Nanofluids. Nanomaterials, 2021, 11(11), 2885 https://doi.org/10.3390/NANO11112885
  16. D. Kanumuri, R. Sangineni, N. Baruah and S. K. Nayak, (2021), Study of magnetic properties of mineral oil based nanofluids. IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Johor Bahru, Malaysia,pp.226-229 https://doi.org/10.1109/ICPADM49635.2021.9493922
  17. Mehmet, Karataş., Yunus, Biçen.,(2022), Nanoparticles for next-generation transformer insulating fluids: A review. Renewable & Sustainable Energy Reviews, 2022, 167, 112645 https://doi.org/10.1016/j.rser.2022.112645
  18. Yang, X., Ho, S.L., Fu, W., (2020). Analysis and design of nanofluid-filled power transformers. Electrical Eng., 102, 321–329 https://doi.org/10.1007/s00202-019-00877-8
  19. Eidelman, E., D.., Vul`, A., Y., (2022). Thermal conductivity of nanofluids: influence of particle shape. Technical Physics Letters, 48(13):82-84 https://doi.org/10.21883/tpl.2022.13.53570.18920
  20. Wen-Kai, Zhen.,Zi-Zhen, Lin., Congliang, Huang., Congliang, Huang., (2017), Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation. Chinese Physics B, 26(11):114401 https://doi.org/10.1088/1674-1056/26/11/114401
  21. Kelvii, Wei., (2020), Measurement Techniques for Thermal Conductivity of Nanofluids. In book: Intellectual Property Issues in Nanotechnology, pp. 333-344
  22. https://doi.org/10.1201/9781003052104-22
  23. Ahmed, Rashad., Mohamed, A., Nafe., D., A., Eisa., (2023), Variation of Thermal Conductivity and Heat on Magnetic Maxwell Hybrid Nanofluid Viscous Flow in a Porous System with Higher Order Chemical React. Special Topics & Reviews in Porous Media - An International Journal, 14(2):17-32. https://doi.org/10.1615/specialtopicsrevporousmedia.2023045731
  24. Nikita, Rajda.,R., Patel., (2017), Characterization of virgin and aged transformer oil with SiO2 nanoparticles. 1-4. https://doi.org/10.1109/IPACT.2017.8245186
  25. Mudang, Taro., Dayal, Chandra, Shill., Anu, Kumar, Das., Saibal, Chatterjee. (2017). Experimental investigation of transformer oil based nanofluids for applications in distribution transformers. 3rd International Conference on Condition Assessment Techniques in Electrical Systems.https://doi.org/10.1109/CATCON.2017.8280246
  26. B. Sadeghi, Sh. Ghammamy, Z. Gholipour, M. Ghorchibeigy, A. Amini Nia., (2011) Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell. Micro and Nano letters,6(4),p. 209–213, https://doi.org/10.1049/mnl.2011.0036
  27. Babak Sadeghi, Somayeh Rastgo. Study of the Shape Controlling Silver Nanoplates by Reduction Process. International Journal of Bio-Inorganic Hybrid Nanomaterials. Vol. 1, No. 1 (2012), 33-36
  28. Pouya Barnoon, Davood Toghraie, Reza Balali Dehkordi, MasoudA., (2019), Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. International Communications in Heat and Mass Transfer, 108,104285, https://doi.org/10.1016/j.icheatmasstransfer.2019.104285
  29. Pouyan Talebizadeh sardari, Amin Shahsavar, Davood Toghraie, Pouya Barnoon, (2019), An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field, Physica A: Statistical Mechanics and its Applications, 534, 122129. https://doi.org/10.1016/j.physa.2019.122129
  30. Rostami, S., Toghraie, D., Esfahani, M.A., (2021), Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network. J Therm Anal Calorim, 143, 1119–1128. https://doi.org/10.1007/s10973-020-09426-z
  31. Xiaowei Yang, Ahmadreza Boroomandpour, Shiwei Wen, Davood Toghraie, Farid Soltani, (2021), Applying Artificial Neural Networks (ANNs) for prediction of the thermal characteristics of water/ethylene glycol-based mono, binary and ternary nanofluids containing MWCNTs, titania, and zinc oxide, Powder Technology, 388: 418-424. https://doi.org/10.1016/j.powtec.2021.04.093.
  32. Yanfang Zhu, Mohammad Zamani, Guiyang Xu, Davood Toghraie, Mohammad Hashemian, As'ad Alizadeh, (2021), A comprehensive experimental investigation of dynamic viscosity of MWCNT-WO3/water-ethylene glycol antifreeze hybrid nanofluid, Journal of Molecular Liquids, 333, 115986. https://doi.org/10.1016/j.molliq.2021.115986
  33. IS 335-1993, New Insulating oils-specifications, by Bureau of Indian standards with updates in 1998.
  34. C Anantha Prabhu, D Silambarasan, R Sarika, V Selvam, Synthesis and characterization of TiO2, (2022), Materials Today: Proceedings, 64(5), 1793-1797, https://doi.org/10.1016/j.matpr.2022.06.074
  35. Zhang, H., & Banfield, J. F., (1999), Thermodynamic analysis of phase stability of nanocrystalline titania. The Journal of Materials Chemistry, 9(2), 207-216. https://doi.org/10.1039/A805530F.