Formulation, interaction analysis, and invitro hepatocellular carcinoma studies of Rutin loaded lipid and polymeric nanoparticles
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India AND Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
Received: 2024-08-24
Revised: 2024-11-29
Accepted: 2024-12-07
Published 2025-04-01
Copyright (c) 2024 Mohammad Habeeb, Manimaran Vasanthan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 90
Abstract
Hepatocellular carcinoma is a primary liver cancer with a high mortality rate worldwide. The limited efficacy and adverse effects of conventional chemotherapy have driven the exploration of novel therapeutic approaches, including Nano medicine-based anticancer agents. In this study, the best molecule was identified based on molecular-level interaction studies with the three anticancer pathway proteins. The best molecule was encapsulated with polymer and lipid to form nanoparticles and In vitro Hepatocellular carcinoma studies were performed to measure the activity. The interaction analysis revealed that Rutin binds effectively with all three proteins: folate receptor (5IZQ), vascular endothelial growth factor (5ABD), and CD44 (4PZ3), exhibiting binding energies of -44.5015 kcal/mol, -46.8331 kcal/mol, and -42.6949 kcal/mol, respectively. These results indicate that Rutin demonstrates stronger binding affinity compared to other anticancer agents by computation studies. In the formulation, Rutin-formed lipid nanoparticles exhibited higher encapsulation efficacy and drug-loading efficiency compared to polymeric nanoparticles. Dissolution studies of rutin-loaded lipid nanoparticles reveal a gradual release profile, reaching approximately 99% over 6 hours. This sustained release ensures extended drug activity within the tumor environment, improving therapeutic effectiveness. In vitro cytotoxicity studies demonstrated that Rutin-lipid nanoparticles had superior anticancer efficacy, with an IC50 value of 80.45 ± 0.05 µg/mL, compared to 120.45 ± 0.05 µg/mL for Rutin-polymeric nanoparticles against the Hep3B cell lines. Similarly, Fluorescence-based screening studies further confirmed the remarkable anti-cancer potential of Rutin-lipid nanoparticles, primarily by inducing apoptosis in Hep3B cells. These findings suggest that Rutin-lipid nanoparticles hold promise nano-formulations for targeting Hepatocellular carcinoma.
Keywords
- Chemotherapy,
- Docking,
- Fluorescent cell studies,
- Hepatocellular carcinoma,
- Solid-Lipid nanoparticle
References
- B. Foglia, C. Turato, S. Cannito, Hepatocellular Carcinoma: Latest Research in Pathogenesis, Detection and Treatment, Int J Mol Sci 24 (2023). https://doi.org/10.3390/IJMS241512224.
- M. Habeeb, A. Sugumaran, Strategies of Cell Signaling and Critical Focus on Etiology of Hepatocellular Carcinoma, 12 (2022) 5187–5198. https://doi.org/10.33263/BRIAC124.51875198.
- J. Chhatwal, A. Hajjar, P.P. Mueller, G. Nemutlu, N. Kulkarni, M.L.B. Peters, F. Kanwal, Hepatocellular Carcinoma Incidence Threshold for Surveillance in Virologically Cured Hepatitis C Individuals, Clinical Gastroenterology and Hepatology (2023). https://doi.org/10.1016/J.CGH.2023.05.024.
- N. Roehlen, M. Muller, Z. Nehme, … E.C.-J. of, undefined 2023, Treatment of HCC with claudin-1-specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S0168827822031476 (accessed February 3, 2023).
- M.M. AbouSamra, S.M. Afifi, A.F. Galal, R. Kamel, Rutin-loaded Phyto-Sterosomes as a potential approach for the treatment of hepatocellular carcinoma: In-vitro and in-vivo studies, J Drug Deliv Sci Technol 79 (2023) 104015. https://doi.org/10.1016/J.JDDST.2022.104015.
- M. Ghanbari-Movahed, A. Mondal, M.H. Farzaei, A. Bishayee, Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms, Phytomedicine 97 (2022) 153909. https://doi.org/10.1016/J.PHYMED.2021.153909.
- M. Habeeb, H. Woon You, K. Balasaheb Aher, G. Balasaheb Bhavar, S. Suryabhan Pawar, S. Dnyaneshwar Gaikwad, Artificial neural networks for the prediction of mechanical properties of CGNP/PLGA nanocomposites, Mater Today Proc (2023). https://doi.org/10.1016/J.MATPR.2023.08.354.
- T. Kareem, M.H.-J. of D.D.S. and Technology, undefined 2022, Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S1773224722007766 (accessed December 12, 2022).
- M. Habeeb, H.W. You, K.B. Aher, G.B. Bhavar, V.S. Khot, S. Mishra, Strategies of nanomedicine for targeting the signaling pathways of Colorectal cancer, J Drug Deliv Sci Technol 84 (2023) 104487. https://doi.org/10.1016/J.JDDST.2023.104487.
- M. Habeeb, T.A. Kareem, K.L. Deepthi, V.S. Khot, Y.H. Woon, S.S. Pawar, Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways, J Drug Deliv Sci Technol 77 (2022). https://doi.org/10.1016/j.jddst.2022.103865.
- V. Agrawal, R. Patel, M. Patel, Design, characterization, and evaluation of efinaconazole loaded poly(D, L-lactide-co-glycolide) nanocapsules for targeted treatment of onychomycosis, J Drug Deliv Sci Technol 80 (2023) 104157. https://doi.org/10.1016/J.JDDST.2023.104157.
- N. Zaghloul, A.A. Mahmoud, N.A. Elkasabgy, N.M. El Hoffy, PLGA-modified Syloid®-based microparticles for the ocular delivery of terconazole: in-vitro and in-vivo investigations, Drug Deliv 29 (2022) 2117. https://doi.org/10.1080/10717544.2022.2092239.
- M. Habeeb, H.T. Vengateswaran, H.W. You, K. Saddhono, K.B. Aher, G.B. Bhavar, Nanomedicine facilitated cell signaling blockade: difficulties and strategies to overcome glioblastoma, J Mater Chem B (2024). https://doi.org/10.1039/D3TB02485G.
- B. Deepa, K. Gayathiridevi, M. Kalyan Chakravarthi, A. Shajahan, B. Shanti Sree, M. Imran Anees, M. Habeeb, Slow evaporation technique to grow 3 – Amino benzene sulfonic acid single crystal for Non-Linear optical (NLO) transmission, Mater Today Proc 62 (2022) 2119–2123. https://doi.org/10.1016/j.matpr.2022.03.045.
- C. Hsu, P. Weng, M. Chen, … C.Y.-C.-B., undefined 2023, Therapeutic targeting of hepatocellular carcinoma cells with antrocinol, a novel, dual-specificity, small-molecule inhibitor of the KRAS and ERK oncogenic signaling, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S0009279722005385 (accessed February 3, 2023).
- B. Hou, L. Qin, L.H.-B. and B. Research, undefined 2023, Hepatocellular carcinoma cells as the model for developing liver-targeted RNAi therapeutics, Elsevier (n.d.). https://www.sciencedirect.com/science/article/pii/S0006291X23000190 (accessed February 3, 2023).
- S. Kumar, A.P.-C. Oncology, undefined 2023, Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma, Mdpi.Com (n.d.). https://www.mdpi.com/2078454 (accessed February 3, 2023).
- D. Bekric, M. Ocker, C. Mayr, S. Stintzing, M.R.- Cancers, undefined 2022, Ferroptosis in hepatocellular carcinoma: mechanisms, drug targets and approaches to clinical translation, Mdpi.Com (2022). https://doi.org/10.3390/cancers14071826.
- N. Pavlović, F.H.-T.F. Journal, undefined 2022, Targeting ER stress in the hepatic tumor microenvironment, Wiley Online Library (2021). https://doi.org/10.1111/febs.16145.
- O. Daoui, H. Nour, O. Abchir, S. Elkhattabi, M. Bakhouch, S. Chtita, A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations, J Biomol Struct Dyn (2022). https://doi.org/10.1080/07391102.2022.2124456.
- N. Mokgautsi, Y. Kuo, C. Chen, Y. Huang, A.W.- Cells, undefined 2023, Multiomics Study of a Novel Naturally Derived Small Molecule, NSC772864, as a Potential Inhibitor of Proto-Oncogenes Regulating Cell Cycle Progression in, Mdpi.Com (n.d.). https://www.mdpi.com/2073-4409/12/2/340 (accessed February 3, 2023).
- K. Sruthi, B. Anupama, N.L. Sudeepthi, P.G. Krishna, A. Kareem, M. Habeeb, Investigation of Wrightia tinctoria extract activity on Alopecia using In-silco and In-vivo studies, Res J Pharm Technol 15 (2022) 643–649. https://doi.org/10.52711/0974-360X.2022.00106.
- M. Habeeb, K.L. Deepthi, M. Vijaya Vara Prasad, N. Irfan, S.L. Ali, K. Navyaja, Development Characterization and Molecular Simulation studies of Metoclopramide HCl and Tramadol HCl Bilayer Tablets, Res J Pharm Technol 15 (2022) 529–534. https://doi.org/10.52711/0974-360X.2022.00085.
- Y. Antonius, … V.K.-J. of P. and, undefined 2022, Prediction of Aflatoxin-B1 (AFB1) Molecular Mechanism Network and Interaction to Oncoproteins Growth Factor in Hepatocellular Carcinoma, Repository.Ubaya.Ac.Id (2022). https://doi.org/10.22207/JPAM.16.3.29.
- Y. Zheng, S. Ji, X. Li, Q.F.- PeerJ, undefined 2022, targets of Taraxacum mongolicum against hepatocellular carcinoma: network pharmacology, molecular docking, and molecular dynamics simulation analysis, Peerj.Com (n.d.). https://peerj.com/articles/13737/ (accessed February 3, 2023).
- B. Sadeghi, Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea, International Journal of Nano Dimension 5 (2014) 575–581. https://doi.org/10.7508/IJND.2014.06.010.
- M.S. Sadjadi, B. Sadeghi, K. Zare, Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2), Journal of Molecular Structure: THEOCHEM 817 (2007) 27–33. https://doi.org/10.1016/J.THEOCHEM.2007.04.015.
- Study of the Shape Controlling Silver Nanoplates by Reduction Process, International Journal of Bio-Inorganic Hybrid Nanomaterials Vol. 1 33 1 (2012) 33. http://sanad.iau.ir/en/Journal/ijbihn/Article/928474 (accessed August 23, 2024).
- B. Sadeghi, S.H. Ghammamy, Z. Gholipour, M. Ghorchibeigy, A.A. Nia, Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell, Micro Nano Lett 6 (2011) 209–213. https://doi.org/10.1049/MNL.2011.0036/CITE/REFWORKS.
- E.A. Fayed, Y.A. Ammar, M.A. Saleh, A.H. Bayoumi, A. Belal, A.B.M. Mehany, A. Ragab, Design, synthesis, antiproliferative evaluation, and molecular docking study of new quinoxaline derivatives as apoptotic inducers and EGFR inhibitors, JMoSt 1236 (2021) 130317. https://doi.org/10.1016/J.MOLSTRUC.2021.130317.
- Y.A. Ammar, A.M. Sh El-Sharief, A. Belal, S.Y. Abbas, Y.A. Mohamed, A.B.M. Mehany, A. Ragab, Design, synthesis, antiproliferative activity, molecular docking and cell cycle analysis of some novel (morpholinosulfonyl) isatins with potential EGFR inhibitory activity, Eur J Med Chem 156 (2018) 918–932. https://doi.org/10.1016/J.EJMECH.2018.06.061.
- M.R. Bauer, M.D. Mackey, Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes, J Med Chem 62 (2019) 3036–3050. https://doi.org/10.1021/ACS.JMEDCHEM.8B01925/SUPPL_FILE/JM8B01925_SI_002.ZIP.
- I. Navabshan, B. Sakthivel, R. Pandiyan, M.G. Antoniraj, S. Dharmaraj, V. Ashokkumar, K.S. Khoo, K.W. Chew, A. Sugumaran, P.L. Show, Computational Lock and Key and Dynamic Trajectory Analysis of Natural Biophors Against COVID-19 Spike Protein to Identify Effective Lead Molecules, Mol Biotechnol 63 (2021) 898–908. https://doi.org/10.1007/S12033-021-00358-Z.
- N. Irfan, S. Balasubramaniyan, D.M. Ali, A. Puratchikody, Bioisosteric replacements of tyrosine kinases inhibitors to make potent and safe chemotherapy against malignant cells, J Biomol Struct Dyn (2022). https://doi.org/10.1080/07391102.2022.2146751.
- A.M. Omar, A.S. Aljahdali, M.K. Safo, G.A. Mohamed, S.R.M. Ibrahim, Docking and Molecular Dynamic Investigations of Phenylspirodrimanes as Cannabinoid Receptor-2 Agonists, Molecules 28 (2023) 44. https://doi.org/10.3390/MOLECULES28010044/S1.
- T. Feczkó, A. Piiper, T. Pleli, C. Schmithals, D. Denk, S. Hehlgans, F. Rödel, T.J. Vogl, M.G. Wacker, Theranostic Sorafenib-Loaded Polymeric Nanocarriers Manufactured by Enhanced Gadolinium Conjugation Techniques, Pharmaceutics 2019, Vol. 11, Page 489 11 (2019) 489. https://doi.org/10.3390/PHARMACEUTICS11100489.
- M.C.O. Da Rocha, P.B. Da Silva, M.A. Radicchi, B.Y.G. Andrade, J.V. De Oliveira, T. Venus, C. Merker, I. Estrela-Lopis, J.P.F. Longo, S.N. Báo, Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells, J Nanobiotechnology 18 (2020). https://doi.org/10.1186/S12951-020-00604-7.
- H.M. Alhelal, S. Mehta, V. Kadian, V. Kakkar, H. Tanwar, R. Rao, B. Aldhubiab, N. Sreeharsha, P. Shinu, A.B. Nair, Solid Lipid Nanoparticles Embedded Hydrogels as a Promising Carrier for Retarding Irritation of Leflunomide, Gels 9 (2023). https://doi.org/10.3390/GELS9070576.
- P. Pandey, M. Rahman, P.C. Bhatt, S. Beg, B. Paul, A. Hafeez, F.A. Al-Abbasi, M.S. Nadeem, O. Baothman, F. Anwar, V. Kumar, Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin, Https://Doi.Org/10.2217/Nnm-2017-0306 13 (2018) 849–870. https://doi.org/10.2217/NNM-2017-0306.
- H. Akel, R. Ismail, G. Katona, F. Sabir, R. Ambrus, I. Csóka, A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation, Int J Pharm 604 (2021) 120724. https://doi.org/10.1016/J.IJPHARM.2021.120724.
- F. De Gaetano, M.C. Cristiano, V. Venuti, V. Crupi, D. Majolino, G. Paladini, G. Acri, B. Testagrossa, A. Irrera, D. Paolino, S. Tommasini, C.A. Ventura, R. Stancanelli, Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation, Molecules 2021, Vol. 26, Page 1039 26 (2021) 1039. https://doi.org/10.3390/MOLECULES26041039.
- P. Pandey, M. Rahman, P.C. Bhatt, S. Beg, B. Paul, A. Hafeez, F.A. Al-Abbasi, M.S. Nadeem, O. Baothman, F. Anwar, V. Kumar, Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin, Https://Doi.Org/10.2217/Nnm-2017-0306 13 (2018) 849–870. https://doi.org/10.2217/NNM-2017-0306.
- M.J. Ansari, M. Rahman, K.S. Alharbi, W.M. Altowayan, A.M.A. Ali, W.H. Almalki, M.A. Barkat, T. Singh, S. Nasar, M.H. Akhter, S. Beg, H. Choudhry, Hispolon-Loaded Liquid Crystalline Nanoparticles: Development, Stability, in Vitro Delivery Profile, and Assessment of Hepatoprotective Activity in Hepatocellular Carcinoma, ACS Omega 7 (2022) 9452–9464. https://doi.org/10.1021/ACSOMEGA.1C06796/ASSET/IMAGES/LARGE/AO1C06796_0008.JPEG.
- G.K. Das, P.P.Y. Chan, A. Teo, J.S.C. Loo, J.M. Anderson, T.T.Y. Tan, In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts, J Biomed Mater Res A 93 (2010) 337–346. https://doi.org/10.1002/jbm.a.32533.
- Y. Manojkumar, S. Ambika, R. Arulkumar, B. Gowdhami, P. Balaji, G. Vignesh, S. Arunachalam, P. Venuvanalingam, R. Thirumurugan, M.A. Akbarsha, Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt(III) Schiff base complexes, New Journal of Chemistry 43 (2019) 11391–11407. https://doi.org/10.1039/C9NJ01269A.
- A. Puratchikody, Identification of Silver Nanoparticle-shaping Tridax procumbens Phytoconstituent by Theoretical Simulation and Experimental Correlation, (n.d.). www.ijpsonline.com (accessed November 5, 2023).
- A. Anilkumar, A. Bhanu P A, In vitro anticancer activity of “Methanolic extract of papaya blackseeds” (MPB) in Hep G2 cell lines and its effect in the regulation of bcl-2, caspase-3 and p53 gene expression, Advances in Cancer Biology - Metastasis 4 (2022). https://doi.org/10.1016/j.adcanc.2021.100025.
- T. Zhou, H. Zhou, L. Tian, M. Tang, L. Wang, Y. Kang, T. Chen, X. Li, S. Wu, R. Xia, X. Huang, L. Peng, W. Yin, Pomegranate juice-containing serum inhibits migration of hepatocellular carcinoma cells and promotes apoptosis by induction of mitochondrial dysfunction, J Nutr Biochem (2023) 109557. https://doi.org/10.1016/j.jnutbio.2023.109557.