10.57647/j.ijnd.2025.1601.02

Brugmansia suaveolens leaf and flower-derived Silver nanoparticle gel with antimicrobial, antioxidant, and anti-Inflammatory potency

  1. Department of Pharmacognosy, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
  2. Bharati Vidyapeeth College of Pharmacy, Palus, India
  3. Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
  4. Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
  5. Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, India
Brugmansia suaveolens leaf and flower-derived Silver nanoparticle gel with antimicrobial, antioxidant, and anti- Inflammatory potency

Received: 2024-07-24

Revised: 2024-09-02

Accepted: 2024-09-10

Published in Issue 2025-01-10

How to Cite

Tamboli, F., Nadaf, S., Mulani, S., Gaikwad, D., More, H., Tamboli, A., & Gurav, S. (2025). Brugmansia suaveolens leaf and flower-derived Silver nanoparticle gel with antimicrobial, antioxidant, and anti-Inflammatory potency. International Journal of Nano Dimension, 16(1 (January 2025), 1-19. https://doi.org/10.57647/j.ijnd.2025.1601.02

PDF views: 284

Abstract

The rising demand for environmentally friendly technologies has spurred research into nanoparticle production methods utilizing biological agents. This study investigates the synthesis of silver nanoparticles (AgNPs) using extracts from Brugmansia suaveolens leaves and flowers as reducing agents. The nanoparticles were thoroughly characterized using DPPH assay, UV-visible spectroscopy, X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Both leaf and flower extracts were assessed for their antibacterial, antifungal, and anti-inflammatory properties, confirming the presence of bioactive compounds such as amines, carbohydrates, alkaloids, glycosides, saponins, and flavonoids. The synthesized AgNPs exhibited crystalline structures with average sizes of 102.7 nm (flower extract) and 75.2 nm (leaf extract), demonstrating robust antioxidant activities and effective inhibition against pathogens including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Xanthomonas campestris, and Aspergillus niger. These AgNPs were incorporated into gel formulations, evaluated for physical characteristics and in vitro diffusion properties. Notably, batch F6 showed exceptional skin penetration, with 84.96% of nanoparticles penetrating goat skin. Overall, these findings highlight the potential of AgNPs-loaded gel formulations as promising therapeutic options for chronic injuries and mild burns, warranting further in vivo studies to assess safety and efficacy.

Keywords

  • Angel's trumpet,
  • Burns,
  • Green synthesis,
  • Metal nanoparticles,
  • Wounds

References

  1. Annamalai J., Nallamuthu T., (2016), Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl. Nanosci. 6: 259-265. https://doi.org/10.1007/s13204-015-0426-6
  2. Jain A. S., Pawar P. S., Sarkar A., Junnuthula V., & Dyawanapelly S., (2021), Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci. 22(21): 11993. https://doi.org/10.3390/ijms222111993
  3. Pal N., Agarwal M., & Ghosh A., (2023), Green synthesis of silver nanoparticles using polysaccharide-based guar gum. Mater. Today: Proc. 76: 212-218. https://doi.org/10.1016/j.matpr.2023.01.048
  4. Thakkar K. N., Mhatre S. S., & Parikh R. Y., (2010), Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6(2): 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  5. Sadeghi B., (2014), Synthesis of silver nanoparticles using leaves aqueous extract of Nasturtium Officinale (NO) and its antibacterial activity. Int. J. Mol. Clin. Microbiol. 2: 428-434.
  6. Sadeghi B., Koupae B., (2017), Biogenic Synthesis of Silver Nanoparticles Using Fruit Aqueous Extract of Psidium Guajava and Its Antibacterial Activity. J. Nanoanalysis. 4(2): 126-133.
  7. Sadeghi B., Garmaroudi F. S., Hashemi M., Nezhad H. R., Nasrollahi A., Ardalan S., & Ardalan S., (2012), Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv. Powder Technol. 23(1): 22-26. https://doi.org/10.1016/j.apt.2010.11.011.
  8. Amini Nia A., Pourshamsian Kh., Sadeghi B., (2020), Nano-ZnO impregnated on starch-a highly efficient heterogeneous bio-based catalyst for one-pot synthesis of pyranopyrimidinone and xanthene derivatives as potential. Russ. J. Org. Chem. 56: 1279-1288. http://doi.org/10.1134/S1070428020070234
  9. Yin I. X., Zhang J., Zhao I. S., Mei M. L., Li Q., & Chu C. H., (2020), The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine. 15: 2555-2562. https://doi.org/10.2147/IJN.S246764
  10. Li Y., Leung P., Yao L., Song Q., & Newton E., (2006), Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62(1): 58-63. https://doi.org/10.1016/j.jhin.2005.04.015
  11. Martínez-Higuera A., Rodríguez-Beas C., Villalobos-Noriega J. M. A., Arizmendi-Grijalva A., Ochoa-Sánchez C., Larios-Rodríguez E., Martínez-Soto J. M., Rodríguez-León E., Ibarra-Zazueta C., Mora-Monroy R., Borbón-Nuñez H. A., García-Galaz A., Candia-Plata M. C., López-Soto L. F., & Iñiguez-Palomares R. (2021), Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci. Rep. 11(1): 11312. https://doi.org/10.1038/s41598-021-90763-w
  12. Kumari, S. C., Dhand, V., & Padma, P. N. (2021). Green synthesis of metallic nanoparticles: A review. In R. Praveen Kumar and B. Bharathiraja (Ed.), Nanomaterials application in biofuels and bioenergy production system (pp. 259-281). Nanomaterials. 11: 259-281. Elsevier. https://doi.org/10.1016/B978-0-12-822401-4.00022-2
  13. Jamkhande P. G., Ghule N. W., Bamer A. H., & Kalaskar M. G., (2019), Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174
  14. Azari B., Pourahmad A., Sadeghi B., & Mokhtary, M. (2023), Green synthesis of SiO2 from Equisetnm arvense plant for synthesis of SiO2/ZIF-8 MOF nanocomposite as photocatalyst. J. Coord. Chem. 76(2), 219–231. https://doi.org/10.1080/00958972.2023.2166408.
  15. McNamara K., Tofail S. A., Thorat N. D., Bauer J., & Mulvihill J. J., (2020), Biomedical applications of nanoalloys. Nanoalloys. 15: 381-432. https://doi.org/10.1016/B978-0-12-819847-6.00016-4
  16. Dessai S., Ayyanar M., Amalraj S., Khanal P., Vijayakumar S., Gurav N., Rarokar N., Kalaskar M., Nadaf S., Gurav S, (2022), Bioflavonoid mediated synthesis of TiO2 nanoparticles: characterization and their biomedical applications. Mater. Lett. 311: 131639. https://doi.org/10.1016/j.matlet.2021.131639
  17. Sadeghi B., Mohammadzadeh M., & Babakhani B., (2015), Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. J. Photochem. Photobiol. B: Biol. 148: 101-106. https://doi.org/10.1016/j.jphotobiol.2015.03.025.
  18. Sadeghi B., (2024), Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea. Int. J. Nano Dimens. 5(6): 575-581. https://doi.org/10.7508/ijnd.2014.06.010.
  19. Jahani J., Ghane M., & Sadeghi B., (2021), Biosynthesis of silver nanoparticles using native Acetobacter and Pediococcus strains. Int. J. Mol. Clin. Microbiol. 11(1): 1479-1488.
  20. Kaur M., Gautam A., Guleria P., Singh K., Kumar V. (2022), Green synthesis of metal nanoparticles and their environmental applications. Curr. Opin. Environ. Sci. Health. 29: 100390. https://doi.org/10.1016/j.coesh.2022.100390
  21. Prabhu S., & Poulose E. K., (2012), Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2: 1-10. https://doi.org/10.1186/2228-5326-2-32
  22. Philip D., Unni C., Aromal S. A., & Vidhu V., (2011), Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 78(2): 899-904. https://doi.org/10.1016/j.saa.2010.12.060
  23. Jamkhande P. G., Ghule N. W., Bamer A. H., & Kalaskar M. G., (2019), Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174
  24. Pantidos N., & Horsfall L. E., (2014), Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol. 5(5): 1. https://doi.org/110.4172/2157-7439.1000233
  25. Philip D., (2011), Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 78(1): 327-331. https://doi.org/10.1016/j.saa.2010.10.015
  26. Ahmad K., Asif H. M., Afzal T., Khan M. A., Younus M., Khurshid U., Safdar M., Saifulah S., Ahmad B., Sufyan A., Ansari S. A., Alkahtani H. M., Ansari I. A. (2023), Green synthesis and characterization of silver nanoparticles through the Piper cubeba ethanolic extract and their enzyme inhibitory activities. Front. Chem., 11: 1065986. https://doi.org/10.3389/fchem.2023.1065986
  27. Yadav R., Saini H., Kumar D., Pasi S., & Agrawal V., (2019), Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications. Mater. Sci. Eng. C. 104: 109984. https://doi.org/10.1016/j.msec.2019.109984
  28. Singla S., Jana A., Thakur R., Kumari C., Goyal S., & Pradhan J., (2022), Green synthesis of silver nanoparticles using Oxalis griffithii extract and assessing their antimicrobial activity. OpenNano. 7: 100047. https://doi.org/10.1016/j.onano.2022.100047
  29. Alshameri A. W., Owais M., Altaf I., & Farheen S., (2022), Rumex nervosus mediated green synthesis of silver nanoparticles and evaluation of its in vitro antibacterial, and cytotoxic activity. OpenNano. 8: 100084. https://doi.org/10.1016/j.onano.2022.100084
  30. Prapaipittayakhun J., Boonyuen S., Zheng A. L. T., Apinyauppatham K., & Arpornmaeklong P., (2023), Biologic effects of biosynthesized Oroxylum indicum/silver nanoparticles on human periodontal ligament stem cells. OpenNano. 9: 100117. https://doi.org/10.1016/j.onano.2022.100117
  31. Sadeghi B., Rostami A., & Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 134: 326-332. https://doi.org/10.1016/j.saa.2014.05.078.
  32. Sadeghi B., Koupaei B., (2022), Biological synthesis of silver nanoparticles using the aqueous extract of Psidium guajava (PG) and its antibacterial activity. J. Med. Biol. Sci. 12(2): 21-33.
  33. Pundir S., Shukla M. K., Singh A., Chauhan R., Lal U. R., Ali A., & Kumar D., (2022), A comprehensive review on angel's trumpet (Brugmansia suaveolens). S. Afr. J. Bot. 151: 266-274. https://doi.org/10.1016/j.sajb.2022.02.023
  34. Kumar S., Gupta A., Saini R. V., Kumar A., Dhar K. L., & Mahindroo N., (2020), Immunomodulation-mediated anticancer activity of a novel compound from Brugmansia suaveolens leaves. Bioorg. Med. Chem. 28(12): 115552. https://doi.org/10.1016/j.bmc.2020.115552
  35. Petricevich V. L., Salinas-Sánchez D. O., Avilés-Montes D., Sotelo-Leyva C., & Abarca-Vargas R., (2020), Chemical compounds, pharmacological and toxicological activity of Brugmansia suaveolens: a review. Plants (Basel). 9(9): 1161. https://doi.org/10.3390/plants9091161
  36. Parker A. G., Peraza G. G., Sena J., Silva E. S., Soares M. C. F., Vaz M. R. C., Furlong, E. B., & Muccillo-Baisch, A. L., (2007), Antinociceptive effects of the aqueous extract of Brugmansia suaveolens flowers in mice. Biol. Res. Nurs. 8(3): 234-239. https://doi.org/10.1177/1099800406293984
  37. Muccillo-Baisch A. L., Parker A. G., Cardoso G. P., Cezar-Vaz M. R., & Flores Soares M. C., (2010), Evaluation of the analgesic effect of aqueous extract of Brugmansia suaveolens flower in mice: possible mechanism involved. Biol. Res. Nurs. 11(4): 345-350. https://doi.org/10.1177/1099800409354123
  38. Brito G. R., de Lima M. B., Maciel G. C., & Santos M. S., (2023), Antibacterial activity of crude aqueous solution of Brugmansia suaveolens flowers. Res. Soc. Dev. 12(2): e7112238140. https://doi.org/10.33448/rsd-v12i2.38140
  39. Jain J., Arora S., Rajwade J. M., Omray P., Khandelwal S., & Paknikar K. M., (2009), Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharm. 6(5): 1388-1401. https://doi.org/10.1021/mp900056g
  40. Khogta S., Patel J., Barve K., & Londhe V., (2020), Herbal nano-formulations for topical delivery. J. Herb. Med. 20: 100300. https://doi.org/10.1016/j.hermed.2019.100300
  41. Franceschinis G., Beverina M., Corleto M., Sosa A. M., Lillo C., Casará L. A., Alonso S. V., Maffia P., Montanari J., Tuttolomondo M. E., Calienni M. N. (2023), Green-synthesized silver nanoparticles using Aloe maculata extract as antibacterial agent for potential topical application. OpenNano. 12: 100148. https://doi.org/10.1016/j.onano.2023.100148
  42. Nadaf S. J., Killedar S. G., Kumbar V. M., Bhagwat D. A., & Gurav, S. S. (2022), Pazopanib-laden lipid based nanovesicular delivery with augmented oral bioavailability and therapeutic efficacy against non-small cell lung cancer. Int. J pharm. 628: 122287. https://doi.org/10.1016/j.ijpharm.2022.122287
  43. Devanesan S., & AlSalhi M. S., (2021), Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int. J. Nanomedicine. 3343-3356. https://doi.org/10.2147/IJN.S307676
  44. Dias C., Ayyanar M., Amalraj S., Khanal P., Subramaniyan V., Das S., Gandhale P., Biswa V., Ali R., Gurav N., Nadaf S., Rarokar N., Gurav S. (2022), Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: Characterization and mechanistic insights of therapeutic investigation, J. Drug Deliv. Sci. Technol., Volume 73, 103444. https://doi.org/10.1016/j.jddst.2022.103444.
  45. Balouiri M., Sadiki M., & Ibnsouda S. K., (2016), Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6(2): 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  46. Jahangirian H., Haron M. J., Shah M. H., Abdollahi Y., Rezayi M., & Vafaei N., (2013), Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Dig. J. Nanomater. Biostructures. 8(3): 1263-1270.
  47. Moualek I., Aiche G. I., Guechaoui N. M., Lahcene S., & Houali K., (2016), Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract. Asian Pac. J. Trop. Biomed. 6(11): 937-944. https://doi.org/10.1016/j.apjtb.2016.09.002
  48. Patil S., & Muthusamy P., (2020), A bio-inspired approach of formulation and evaluation of Aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. Eur. J. Integr. Med. 33: 101025. https://doi.org/10.1016/j.eujim.2019.101025
  49. Dantas M. G. B., Reis S. A. G. B., Damasceno C. M. D., Rolim L. A., Rolim-Neto P. J., Carvalho F. O., & da Silva Almeida J. R. G., (2016), Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci. World J. 2016: 1-7. https://doi.org/10.1155/2016/7394685
  50. Morsy S. M., Elbasyoni I. S., Abdallah A. M., & Baenziger P. S., (2022), Imposing water deficit on modern and wild wheat collections to identify drought-resilient genotypes. J. Agron. Crop Sci. 208(4): 427-440. https://doi.org/10.1111/jac.124
  51. Haneefa KP M., Shahima H. K., Saraswathi R., Mohanta G. P., & Nayar C., (2010), Formulation and evaluation of herbal gel of Pothos scandens Linn. Asian Pac. J. Trop. Med. 3(12): 988-992. https://doi.org/10.1016/S1995-7645(11)60015-1
  52. Katakam L. N. R., & Katari N. K., (2021), Development of in-vitro release testing method for permethrin cream formulation using Franz Vertical Diffusion Cell apparatus by HPLC. Talanta Open. 4: 100056. https://doi.org/10.1016/j.talo.2021.100056
  53. Dias M. C., Pinto D. C., & Silva A. M., (2021), Plant flavonoids: Chemical characteristics and biological activity. Molecules. 26(17): 5377. https://doi.org/10.3390/molecules26175377
  54. Ejaz U., Afzal M., Mazhar M., Riaz M., Ahmed N., Rizg W. Y., Alahmadi A. A., Badr M. Y., Mushtaq R. Y., Yean C. Y. (2024), Characterization, Synthesis, and Biological Activities of Silver Nanoparticles Produced via Green Synthesis Method Using Thymus Vulgaris Aqueous Extract. Int. J. Nanomed. 19, 453–469. https://doi.org/10.2147/IJN.S446017
  55. Alharbi N. S., Alsubhi N. S., & Felimban A. I., (2022), Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. Appl. Sci. 15(3): 109-124. https://doi.org/10.1016/j.jrras.2022.06.012
  56. Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., & Rokhum S. L., (2021), Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 11(5): 2804-2837. https://doi.org/10.1039/d0ra09941d
  57. Pan A., Yang Z., Zheng H., Liu F., Zhu Y., Su X., & Ding Z., (2003), Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment. Appl. Surf. Sci. 205(1-4): 323-328. https://doi.org/10.1016/S0169-4332(02)01122-4
  58. Amirjani A., Firouzi F., & Haghshenas D. F., (2020), Predicting the size of silver nanoparticles from their optical properties. Plasmonics. 15: 1077-1082. https://doi.org/10.1007/s11468-020-01121-x
  59. Durán N., Marcato P. D., De Souza G. I., Alves O. L., & Esposito E., (2007), Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3(2): 203-208. https://doi.org/10.1166/jbn.2007.022
  60. Nkosinathi D. G., Albertus B. K., Jabulani S. S., Siboniso S. M., & Pullabhotla R. V., (2020), Biosynthesis, characterization, and application of iron nanoparticles: In dye removal and as antimicrobial agent. Water Air Soil Pollut. 231: 1-10. https://doi.org/10.1007/s11270-020-04498-x
  61. Singh A. K., (2022), A review on plant extract-based route for synthesis of cobalt nanoparticles: Photocatalytic, electrochemical sensing and antibacterial applications. Curr. Res. Green Sustain. Chem. 5: 100270. https://doi.org/10.1016/j.crgsc.2022.100270
  62. Srikar S. K., Giri D. D., Pal D. B., Mishra P. K., & Upadhyay S. N., (2016), Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 6(1): 34-44. https://doi.org/10.4236/GSC.2016.61004
  63. Kumar S., Basumatary I. B., Sudhani H. P., Bajpai V. K., Chen L., Shukla S., & Mukherjee A., (2021), Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends Food Sci. Technol. 112: 651-666. https://doi.org/10.1016/J.TIFS.2021.04.031
  64. Shah M. Z., Guan Z.-H., Ud Din A., Ali A., Ur Rehman A., Jan K., Faisal S., Saud S., Adnan M., Wahid F., Alamri S., Siddiqui M. H., Ali S., Nasim W., Hammad H. M., Fahad S., (2021), Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Sci. Rep. 11(1): 20754. https://doi.org/10.1038/s41598-021-00296-5
  65. Parit S. B., Karade V. C., Patil R. B., Pawar N. V., Dhavale R. P., Tawre M., Pardesi K., Jadhav U. U., Dawkar V. V., Tanpure R. S., Kim J. H., Jadhav J. P., Chougale A. D. (2020), Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties. Mater. Today Chem. 17: 100285. https://doi.org/10.1016/j.mtchem.2020.100285.
  66. Padalia H., Moteriya P., Chanda S., (2015), Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 8(5): 732-741. https://doi.org/10.1016/j.arabjc.2014.11.015
  67. Gomathi M., Rajkumar P., Prakasam A., & Ravichandran K., (2017), Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technol. 3(3): 280-284. https://doi.org/10.1016/j.reffit.2016.12.005
  68. Urnukhsaikhan E., Bold B.-E., Gunbileg A., Sukhbaatar N., & Mishig-Ochir T., (2021), Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci. Rep. 11(1): 21047. https://doi.org/10.1038/s41598-021-00520-2
  69. Agarwal H., Nakara A., & Shanmugam V. K., (2019), Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 109: 2561-2572. https://doi.org/10.1016/j.biopha.2018.11.116
  70. Schäfer M., & Werner S., (2008), Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 58(2): 165-171. https://doi.org/10.1016/j.phrs.2008.06.004
  71. Zhao H., Huang J., Li Y., Lv X., Zhou H., Wang H., Xu Y., Wang C., Wang J., Liu Z. (2020), ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials. 258: 120286. https://doi.org/10.1016/j.biomaterials.2020.120286.