DFT assessments on a Chitosan-modified nanocone scaffold for the adsorption of ciclopirox antifungal drug to provide insights into the engineering a potential nano-based drug delivery platform
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, Arizona 85004, USA
- Ahl Al Bayt University, Karbala, Iraq
- Department of Medical Fundamental Sciences, Termez University of Economics and Service, Termez, Uzbekistan
- Department of Engineering and Applied Sciences, Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Tarsus, Türkiye
Received: 2025-03-30
Revised: 2025-05-20
Accepted: 2025-05-25
Published in Issue 2025-06-01
Copyright (c) -1 Chou-Yi Hsu, Radhwan Abdul Kareem, Oybek Ruziyev, Afet Mastan Jafarova, Mahmoud Mirzaei (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 153
Abstract
This work was done by the benefit of employing density functional theory (DFT) calculations for assessing a chitosan-modified nanocone scaffold (S) for the adsorption of ciclopirox antifungal drug (D) to provide insights into the engineering a potential nano-based drug delivery platform by the formation of DS complexes. Two scaffolds were prepared; S1 and S2, and three complexes were obtained for each scaffold by the adsorption of D substance yielding DS11, DS12, and DS13 for S1 and DS21, DS22, and DS23 for S2. The strength of DS2 complexes were found higher than DS1 complexes, in which DS11 and DS21 were the strongest ones in each category. Regarding the evaluation of electronic features, small changes were found for the frontier molecular orbital levels of models and their related features. As a result, formations of DS complexes were found suitable for approaching the main goal of this work by obtaining suitable strengths for the complex systems. Hence, the existence of non-covalent interactions between the adsorbate and adsorbent counterparts and obtaining remarkable electronic features actually approved the applicability of employing S1 and S2 for adsorbing the specific D substance for investigating further developments of nano-based delivery of ciclopirox antifungal drug.
Keywords
- Adsorption,
- Computational assessment,
- Drug interaction,
- Nanomedicine,
- Nanostructure
References
- M.T. Manzari, Y. Shamay, H. Kiguchi, N. Rosen, M. Scaltriti, and D.A. Heller. Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 6:351, 2021. DOI: https://doi.org/10.1038/s41578-020-00269-6.
- E. Veg, K. Hashmi, S. Raza, S. Joshi, A. Rahman Khan, and T Khan. The role of nanomaterials in diagnosis and targeted drug delivery. Chemistry & Biodiversity, 22:e202401581, 2025. DOI: https://doi.org/10.1002/cbdv.202401581.
- P. Trucillo. Drug carriers: classification, administration, release profiles, and industrial approach. Processes, 9:470, 2021. DOI: https://doi.org/10.3390/pr9030470.
- Y. Li, W. Liu, Y. Wang, and S Lu. Cellulose based nano-scaffolds for targeted cancer therapies: current status and future perspective. International Journal of Nanomedicine,20:199, 2025. DOI: https://doi.org/10.2147/IJN.S500261.
- M.K. Malik, P. Bhatt, T. Kumar, J. Singh, V. Kumar, A. Faruk, S. Fuloria, N.K. Fuloria, V. Subrimanyan, and S. Kumar. Significance of chemically derivatized starch as drug carrier in developing novel drug delivery devices. The Natural Products Journal, 13:40, 2023. DOI: https://doi.org/10.2174/2210315512666220819112334.
- M.J. Saadh, C.Y. Hsu, R.A. Kareem, A.M. Jafarova, A. Zareii, M. Edalat, and M. Mirzaei. Computational assessments of 5-Fluorocytosine (Flucytosine) antifungal adsorption onto a fullerene oxide nanocage for engineering a potential drug delivery platform. Chemical Review and Letters, 8, 2025. DOI: https://doi.org/10.22034/crl.2025.512441.1561.
- S. Adepu and S. Ramakrishna. Controlled drug delivery systems: current status and future directions. Molecules, 26:5905, 2021. DOI: https://doi.org/10.3390/molecules26195905.
- J. Pei, Y. Yan, C.P. Palanisamy, S. Jayaraman, P.M. Natarajan, V.R. Umapathy, S. Gopathy, J.R. Roy, J.C. Sadagopan, D. Thalamati, and M. Mironescu. Materials-based drug delivery approaches: recent advances and future perspectives. Green Processing and Synthesis, 13:20230094, 2024. DOI: https://doi.org/10.1515/gps-2023-0094.
- G. Wang, R. Li, B. Parseh, and G. Du. Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydrate Polymers, 268:118192, 2021. DOI: https://doi.org/10.1016/j.carbpol.2021.118192.
- B. Tian, Y. Liu, and J. Liu. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: a review. European Polymer Journal, 154:110533, 2021. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110533.
- M. Saeedi, O. Vahidi, M.R. Moghbeli, S. Ahmadi, M. Asadnia, O. Akhavan, F. Seidi, M. Rabiee, M.R. Saeb, T.J. Webster, and R.S. Varma. Customizing nano-chitosan for sustainable drug delivery. Journal of Controlled Release, 350:175, 2022. DOI: https://doi.org/10.1016/j.jconrel.2022.07.038.
- P. Doroudgar, B. Mousavi-fard, M. Khadematolrasoul, F. Shams, E. Khashabi, and Z. Mirzae Gabaran. Evaluation of the effect of chitosan and titanium dioxide nanoparticles mixed with orthodontic primer on shear bond strength: a systematic review and meta-analysis. International Journal of Scientific Research in Dental and Medical Sciences, 6:184, 2024. DOI: https://doi.org/10.30485/ijsrdms.2024.489237.1618.
- F. Karam and S. Dakhel. Bioactivity assessment of the prepared chitosan-based Schiff base composite on lung cancer and esophageal cancer. Chemical Review and Letters, 7:816, 2024. DOI: https://doi.org/10.22034/crl.2024.462460.1359.
- S. Waheed, Z. Li, F. Zhang, A. Chiarini, U. Armato, and J. Wu. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 20:395, 2022. DOI: https://doi.org/10.1186/s12951-022-01605-4.
- S. Sabbagh Seddigh, A. Fazlzadeh, and S. Sabbagh Seddigh. Evaluation of the diagnostic accuracy of carbon nanoparticle suspensions in sentinel lymph node biopsy of breast cancer: a systematic review and meta-analysis. International Journal of Scientific Research in Dental and Medical Sciences, 5:154, 2023. DOI: https://doi.org/10.30485/ijsrdms.2023.414143.1529.
- M. Nezamabadi, E. Balali, and M. Qomi. A sumanene-chitosan scaffold for the adsorption of niraparib anticancer: DFT insights into the drug delivery. Inorganic Chemistry Communications, 155:111098, 2023. DOI: https://doi.org/10.1016/j.inoche.2023.111098.
- S.A. Kakil, H.Y. Abdullah, and T.G. Abdullah. The impact of lead on structural, electronic, and vibrational properties of pristine C36 and its boron, nitrogen-dopant C36 on pentagonal and hexagonal rings. Chemical Physics Impact. 7:100360, 2023. DOI: https://doi.org/10.1016/j.chphi.2023.100360.
- N. Osman, N. Devnarain, C.A. Omolo, V. Fasiku, Y. Jaglal, and T. Govender. Surface modification of nano‐drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 14:e1758, 2022. DOI: https://doi.org/10.1002/wnan.1758.
- M. Nasrollahzadeh, Z. Issaabadi, M. Sajjadi, S.M. Sajadi, and M. Atarod. Types of nanostructures. Interface Science and Technology, 28:29, 2019. DOI: https://doi.org/10.1016/B978-0-12-813586-0.00002-X.
- M.C. Shanmukha, A. Usha, K.C. Shilpa, and M.K. Siddiqui. Structural investigation of carbon nanocone through topological coindices. International Journal of Quantum Chemistry, 123:e27109, 2023. DOI: https://doi.org/10.1002/qua.27109.
- J.C. Charlier and G.M. Rignanese. Electronic structure of carbon nanocones. Physical Review Letters, 86:5970, 2001. DOI: https://doi.org/10.1103/PhysRevLett.86.5970.
- D.R. Smith, A.P. Escobar, M.N. Andris, B.M. Boardman, and G.M. Peters. Understanding the molecular-level interactions of glucosamine-glycerol assemblies: a model system for chitosan plasticization. ACS Omega, 6:25227, 2021. DOI: https://doi.org/10.1021/acsomega.1c03016.
- S. Jeremić, T.H. Tran, Z. Marković, T.C. Ngo, and D.Q. Dao. Insight into interaction properties between mercury and lead cations with chitosan and chitin: density functional theory studies. Computational and Theoretical Chemistry, 1138:99, 2018. DOI: https://doi.org/10.1016/j.comptc.2018.06.010.
- G.A. Okon, D.G. Malu, H.Y. Abdullah, C.R. Nwokoye, N.I. Gber, C.P. Egbo, J.A. Unyime, and T.E. Gber. Chalcogenides encapsulated Pt-doped carbon quantum dot (Pt@ CQD) as a carrier for the controlled release of lapachone: outlook from theoretical calculations. Diamond and Related Materials, 149:111628, 2024. DOI: https://doi.org/10.1016/j.diamond.2024.111628.
- I. Vaziri, I. Amini, M.R. Poor Heravi, and R. Rzayev. A density functional theory study of adsorption dimethyl fumarate on the surface of the pristine of g-C3N4 and Fe, Ni and Cu decorated graphitic carbon nitride. Chemical Review and Letters, 8:52, 2025. DOI: https://doi.org/10.22034/crl.2024.454286.1327.
- E. Sturabotti, A. Camilli, F. Leonelli, and F. Vetica. Carbon dots as bioactive antifungal nanomaterials. ChemMedChem, 19:e202400463, 2024. DOI: https://doi.org/10.1002/cmdc.202400463.
- S. Gnat, D. Łagowski, A. Nowakiewicz, and M. Dyląg. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131:2095, 2021. DOI: https://doi.org/10.1111/jam.15032.
- S. Munipati, H. Rachamadugu, S. Avileli, R. Avula, N.J. Beladona, and S.R. Boyapally. Microbiological profile of post-COVID-19 mucormycosis in various samples. International Journal of Scientific Research in Dental and Medical Sciences, 4:87, 2022. DOI: https://doi.org/10.30485/ijsrdms.2022.338567.1285.
- E.Y. Gaballah, T.M. Borg, and E.A. Mohamed. Hydroxypropyl chitosan nail lacquer of ciclopirox-PLGA nanocapsules for augmented in vitro nail plate absorption and onychomycosis treatment. Drug Delivery, 29:3304, 2022. DOI: https://doi.org/10.1080/10717544.2022.2144543.
- J. Tao, H. Li, J. Zuo, Y. Li, F. Chen, and Y. Kang. Development and scale-up of a fully continuous flow synthesis of 2-hydroxypyridine-N-oxide. Organic Process Research & Development, 28:1640, 2023. DOI: https://doi.org/10.1021/acs.oprd.3c00285.
- S. Kaviani, S. Shahab, M. Sheikhi, V. Potkin, and H. Zhou. A DFT study of Se-decorated B12N12 nanocluster as a possible drug delivery system for ciclopirox. Computational and Theoretical Chemistry, 1201:113246, 2021. DOI: https://doi.org/10.1016/j.comptc.2021.113246.
- J. Kishishita, C. de Almeida Perez Pimenta, D.P. Cerqueira Macedo, M.B. Delgado-Charro, and L. Bastos Leal. New formulation–microporation combination approaches to delivering ciclopirox across human nails. Pharmaceutics, 16:72, 2024. DOI: https://doi.org/10.3390/pharmaceutics16010072.
- Z. Haleem Al-Qaim, M. Adil, A.J. Kadhim, R. Ali Abdalhuseen, H. Abdulhasan Hammoodi, A.S. Abed, M. Abosaooda, and H. Soleymanabadi. The drug delivery of ciclopirox anticancer by γ-graphyne and its boron nitride analogue: electronic study via DFT. Molecular Physics, 122:e2273980, 2024. DOI: https://doi.org/10.1080/00268976.2023.2273980.
- T. Ahmed, M.A. Rahman, R. Islam, A.A. Piya, and S.U. Shamim. Unravelling the adsorption performance of BN, AlN, GaN and InN 2D nanosheets towards the ciclopirox, 5-fluorouracil and nitrosourea for anticancer drug delivery motive: a DFT-D with QTAIM, PCM and COSMO investigations. Computational and Theoretical Chemistry, 1214:113797, 2022. DOI: https://doi.org/10.1016/j.comptc.2022.113797.
- P. Mucha, B. Borkowski, A. Erkiert-Polguj, and E. Budzisz. Ciclopirox and ciclopirox olamine: antifungal agents in dermatology with expanding therapeutic potential. Applied Sciences, 14:11859, 2024. DOI: https://doi.org/10.3390/app142411859.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian, Inc., Wallingford CT, 2016. URL: https://gaussian.com.
- A. Galano, and J.R. Alvarez–Idaboy. A new approach to counterpoise correction to BSSE. Journal of Computational Chemistry, 27:1203, 2006. DOI: https://doi.org/10.1002/jcc.20438.
- T. Lu. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. The Journal of Chemical Physics, 161:082503, 2024. DOI: https://doi.org/10.1063/5.0216272.
- Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. URL: https://www.chemcraftprog.com
- N.M. O'boyle, A.L. Tenderholt, and K.M. Langner. Cclib: a library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 29:839, 2008. DOI: https://doi.org/10.1002/jcc.20823.
- M.R. Sameti and M. Torkashvand. Theoretical evaluation of C24 nanocage functionalization with protons for enhanced sulfacetamide drug delivery: a DFT study with non-covalent interaction analyses. Journal of Molecular Structure, 1318:139298, 2024. DOI: https://doi.org/10.1016/j.molstruc.2024.139298.
- R. Ahmadi, M.R. Jalali Sarvestani, and B. Sadeghi. Computational study of the fullerene effects on the properties of 16 different drugs: a review. International Journal of Nano Dimension, 9:325, 2018. URL: https://ijnd.tonekabon.iau.ir/article_660200.html.
- R. Ghiasi, M. Nikbakht, and H. Pasdar. Interactions of the potential antitumor agent vanadocene dichloride with C20 and M+@ C20 (M= Li, Na, K) nano-cages: a DFT investigation. Results in Chemistry, 9:101659, 2024. DOI: https://doi.org/10.1016/j.rechem.2024.101659.
- M.J. Saadh, M. Mirzaei, Z.S. Ghnim, R.A. Kareem, S.K. Mohammed, M. Mohany, and S. Ghotekar. Computer-aided fabrication of an iron-tip enhanced nanocone for providing a smart carrier of Cycloserine (Seromycin) drug through a potential delivery process. Materials Chemistry and Physics, 338:130646, 2025. DOI: https://doi.org/10.1016/j.matchemphys.2025.130646.
10.57647/j.ijnd.2025.1604.32
