10.57647/j.ijnd.2025.1604.31

Optimizing thermal efficiency: A Study on parabolic trough solar collector performance with nanofluids and fin designs

  1. Mechanical Engineering Department, Hamedan University of Technology, Hamedan, Iran
Optimizing thermal efficiency: A Study on parabolic trough solar collector performance with nanofluids and fin designs

Received: 2025-01-20

Revised: 2025-04-14

Accepted: 2025-05-05

Published in Issue 2025-05-17

How to Cite

Jamali, M. ., & Hajialigol, N. . (2025). Optimizing thermal efficiency: A Study on parabolic trough solar collector performance with nanofluids and fin designs. International Journal of Nano Dimension, 16(4 (October 2025). https://doi.org/10.57647/j.ijnd.2025.1604.31

PDF views: 126

Abstract

This study comprehensively explores the application of thermal nanofluids in enhancing the performance of solar parabolic trough collectors through advanced computational modeling techniques. Specifically, the research employs the Large Eddy Simulation (LES) model to investigate heat transfer dynamics, focusing on the interplay between fluid flow characteristics and thermal energy distribution. The analysis examines the influence of varying porous fin heights on the flow structure and heat transfer behavior under a wide range of Reynolds numbers (40,000–450,000) and a fixed Prandtl number of 0.7. Key results indicate that increasing the height of the porous fins significantly improves the overall heat transfer efficiency, as evidenced by an enhancement in the Nusselt number. Additionally, the findings reveal a corresponding increase in the tube friction coefficient, which is essential for understanding the trade-offs between thermal performance and flow resistance. These insights underscore the potential of optimized fin geometries and nanofluid applications in advancing the efficiency of solar thermal power systems.

Keywords

  • Friction coefficient,
  • Heat transfer,
  • Nanofluid,
  • Nusselt number,
  • Reynolds number,
  • Numerical simulation,
  • Solar parabolic collectors

References

  1. Kalogirou, S. A., ''Solar energy engineering: processes and systems'', Academic press, 2013.
  2. Almutairi, K., Nazari, M.A., Salem, M., Rashidi, M.M., Assad, M.E.H., Padmanaban, S., ''A review on applications of solar energy for preheating in power plants'', Alexandria Engineering Journal, Vol. 61, No. 7, pp. 5283-94, 2022, https://doi.org/10.1016/j.aej.2021.10.045.
  3. Verma, O.P., Manik, G., Sethi, S.K., ''A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control'', Renewable and sustainable energy reviews, Vol. 100, pp. 90-109, 2019, https://doi.org/10.1016/j.rser.2018.10.002.
  4. Yılmaz, İ.H., Söylemez, M.S., ''Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in Turkey'', Desalination, Vol. 291, pp. 23-40, 2012, https://doi.org/10.1016/j.desal.2012.01.022.
  5. Hussein, A.K., ''Applications of nanotechnology in renewable energies—A comprehensive overview and understanding'', Renewable and Sustainable Energy Reviews, Vol. 42, pp. 460-76, 2015, https://doi.org/10.1016/j.rser.2014.10.027.
  6. Hussein, A.K.J.R, Reviews, S.E., ''Applications of nanotechnology to improve the performance of solar collectors'', Recent advances and overview, Vol. 62, pp. 767-92, 2016, https://doi.org/10.1016/j.rser.2016.04.050.
  7. Younis, O., Hussein, A.K., Attia, M.E.H., Rashid, F.L, Kolsi, L., Biswal, U., ''Hemispherical solar still: Recent advances and development'', Energy Reports, Vol. 8, pp. 8236-58, 2022, https://doi.org/10.1016/j.egyr.2022.06.037.
  8. El Ghazzani, B., Plaza, D.M., El Cadi, R.A., Ihlal, A., Abnay, B, Bouabid, K., ''Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco'', Renewable energy, Vol. 113, pp. 1261-75, 2017, https://doi.org/10.1016/j.renene.2017.06.063.
  9. Daabo, A.M., Ahmad, A., Mahmoud, S., Al-Dadah, R. K., ''Parametric analysis of small scale cavity receiver with optimum shape for solar powered closed Brayton cycle applications'', Applied Thermal Engineering, Vol. 122, pp. 626-41. 2017, https://doi.org/10.1016/j.applthermaleng.2017.03.093.
  10. Loni, R., Asli-Ardeh, E.A., Ghobadian, B., Kasaeian, A., ''Experimental study of carbon nano tube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: Outdoor tests'', Energy Conversion and Management, Vol. 165, pp. 593-601, 2018, https://doi.org/10.1016/j.enconman.2018.03.079.
  11. Razmmand, F., Mehdipour, R., Mousavi, S.M., ''A numerical investigation on the effect of nanofluids on heat transfer of the solar parabolic trough collectors'', Applied Thermal Engineering, Vol. 152, pp. 624-33, 2019, https://doi.org/10.1016/j.applthermaleng.2019.02.118.
  12. Bonanos, A., Georgiou, M., Stokos, K., Papanicolas, C. ,''Engineering aspects and thermal performance of molten salt transfer lines in solar power applications'', Applied Thermal Engineering, Vol. 154, pp. 294-301, 2019, https://doi.org/10.1016/j.applthermaleng.2019.03.091.
  13. Sadjadi, M.A.S., Meskinfam, M., Sadeghi, B., Jazdarreh, H., Zare, K., "In situ biomimetic synthesis and characterization of nano hydroxyapatite in gelatin matrix", Journal of biomedical nanotechnology, Vol. 7, No. 3, pp. 450-454, 2011, https://doi.org/10.1166/jbn.2011.1305.
  14. Sadjadi, M.A.S., Sadeghi, B., Zare, K., "Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes,[NSOX (NPCl2) 2]; X= F (1), X= Cl (2)", Journal of Molecular Structure: THEOCHEM, Vol. 817, No. 1-3, pp. 27-33, 2007, https://doi.org/10.1016/j.theochem.2007.04.015.
  15. Ouagued, M., Khellaf, A., Loukarfi, L., "Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils", Energ. Conver. Manage, Vol. 75, pp. 191–201, 2013, https://doi.org/10.1016/j.enconman.2013.06.011.
  16. Padilla, R.V., Gokmen, D., Goswami, Y., Stefanakos, E., Rahman, M.M., "Heat transfer analysis of parabolic trough solar receiver", Appl. Energy, Vol. 88, No. 12, pp. 5097–5110, 2011, https://doi.org/10.1016/j.apenergy.2011.07.012.
  17. Forristall, R., "Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver". No. NREL/TP-550-34169. National Renewable Energy Lab., Golden, CO.(US), 2003.
  18. Kalogirou, S.A., "A detailed thermal model of a parabolic trough collector receiver", Energy, Vol. 48, No. 1, pp. 298–306, 2012. https://doi.org/10.1016/j.energy.2012.06.023.
  19. Odeh, S.D., Morrison, G.L., Behnia, M., "Modelling of parabolic trough direct steam generation solar collectors, Sol." Energy, Vol. 62, pp. 395–406, 1998.
  20. Kassem, T., "Numerical study of the natural convection process in the paraboliccylindrical solar collector", Desalination, Vol. 209, No. 1–3, pp. 144–150, 2007, https://doi.org/10.1016/j.desal.2007.04.023.
  21. Gong, G., Huang, X., Wang, J., Hao, M., "An optimized model and test of the China’s first high temperature parabolic trough solar receiver", Sol. Energy, Vol. 84, No. 12, pp. 2230–2245, 2020. https://doi.org/10.1016/j.solener.2010.08.003.
  22. Lu, J., Ding, J., Yang, J., Yang, X., "Nonuniform heat transfer model and performance of parabolic trough solar receiver", Energy, Vol. 59, pp. 666–675, 2013, https://doi.org/10.1016/j.energy.2013.07.052.
  23. He, Y.L., Xiao, J., Cheng, Z.D., Tao, Y.B., "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector”, Renew. Energy, Vol. 36, No. 3, pp. 976–985, 2011, https://doi.org/10.1016/j.renene.2010.07.017.
  24. Cheng, Z.D., He, Y.L., Cui, F.Q., Xu, R.J., Tao Y.B., "Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method", Sol. Energy, Vol. 86, No. 6, pp. 1770– 1784. 2012, https://doi.org/10.1016/j.solener.2012.02.039.
  25. Sadeghy, B., Ghammami, S., "Oxidation of alcohols with tetramethylammonium fluorochromate in aceticoi acid", Russian journal of general chemistry, Vol. 75, No. 12, pp. 1886-1888, 2005, https://doi.org/10.1007/s11176-006-0008-0.
  26. Sadeghi, B., Ghammamy, S., Gholipour, Z., Ghorchibeigy, M. Nia, A.A., "Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell", Micro & Nano Letters, Vol. 6, No. 4, pp. 209-213, 2011, https://doi.org/10.1049/mnl.2011.0036.
  27. Amininia, A., Pourshamsian, K., Sadeghi, B., "Nano-ZnO Impregnated on Starch—A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents" Russian Journal of Organic Chemistry, Vol. 56, No. 7, pp. 1279-1288, 2020, https://doi.org/10.1134/S1070428020070234.
  28. Cheng, Z.D., He, Y.L., Qiu, Y.U., "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends”, Renew. Energy, Vol. 74, pp. 139–147, 2015, https://doi.org/10.1016/j.renene.2014.07.060.
  29. Huang, W., Peng, H.U., Chen, Z., "Performance simulation of a parabolic trough solar collector", Sol. Energy, Vol. 86, No. 2, pp. 746–755, 2012. https://doi.org/10.1016/j.solener.2011.11.018.
  30. Behar, O., Khellaf, A., Mohammedi, K., Ait-Kaci, S., "Effect of Tracking Mode on the Performance of Parabolic Trough Solar Collector", University of Bechar, 2013.
  31. Ratzel, A.C., Hickox, C.E., and Gartling, D.K., “Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries”, J. Heat Transfer, Vol. 101, No. 1, pp. 108-113, 1979, https://doi.org/10.1115/1.3450899.
  32. Reddy, K., Satyanarayana, G., ''Numerical study of porous finned receiver for solar parabolic trough concentrator'', Engineering applications of computational fluid mechanics, Vol. 2, pp. 172-84, 2008, https://doi.org/10.1080/19942060.2008.11015219.
  33. Bayareh, M., Usefian, A., ''Simulation of parabolic trough solar collectors using various discretization approaches: A review'', Engineering Analysis with Boundary Elements, Vol. 153, pp. 126-37, 2023, https://doi.org/10.1016/j.enganabound.2023.05.025.
  34. Shuai, Y., Wang, F.Q., Xia, X.L., Tan, H.P., ''Ray-thermal-structural coupled analysis of parabolic trough solar collector system'', ISBN , 2010.
  35. Tripathy, A. K., Ray, S., Sahoo, S.S., Chakrabarty, S., ''Structural analysis of absorber tube used in parabolic trough solar collector and effect of materials on its bending: A computational study'', Solar Energy, Vol. 163 ,pp. 471- 85, 2018, https://doi.org/10.1016/j.solener.2018.02.028.
  36. Kassem T., ''Numerical study of the natural convection process in the parabolic-cylindrical solar collector'', Desalination, Vol. 209, No. 1-3, pp. 144-50, 2007, https://doi.org/10.1016/j.desal.2007.04.023.
  37. Kumar K. R., Reddy K. ,''Thermal analysis of solar parabolic trough with porous disc receiver'', Applied energy, Vol. 86, No. 9, pp. 1804-12, 2009, https://doi.org/10.1016/j.apenergy.2008.11.007.
  38. Gunes, S., Ozceyhan, V., Buyukalaca, O., ''Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts'', Experimental Thermal and Fluid Science, Vol. 34, No. 6, pp. 684-91, 2010, https://doi.org/10.1016/j.expthermflusci.2009.12.010.
  39. Bellos, E., Tzivanidis, C., Tsimpoukis, D., ''Enhancing the performance of parabolic trough collectors using nanofluids and turbulators'', Renewable and Sustainable Energy Reviews, Vol. 91, pp. 358-75, 2018, https://doi.org/10.1016/j.rser.2018.03.091.
  40. Bellos, E., Tzivanidis, C., ''Enhancing the performance of a parabolic trough collector with combined thermal and optical techniques'', Applied thermal engineering, Vol. 164, pp. 114496, 2020, https://doi.org/10.1016/j.applthermaleng.2019.114496.
  41. Norouzi, A.M., Siavashi, M., Oskouei, M.K., ''Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles'', Renewable energy, Vol. 145, pp. 569-84, 2020, https://doi.org/10.1016/j.renene.2019.06.027.
  42. Rashidi, S., Esfahani, J. A., Rashidi, A., ''A review on the applications of porous materials in solar energy systems'', Renewable and Sustainable Energy Reviews, Vol. 73, pp. 1198-210, 2017, https://doi.org/10.1016/j.rser.2017.02.028.
  43. Wang, B., Hong, Y., Hou, X., Xu, Z., Wang, P., Fang, X., ''Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials'', Energy Conversion and Management, Vol.
  44. ,pp. 206-15, 2015, https://doi.org/10.1016/j.enconman.2015.07.064.
  45. Siavashi, M., Bahrami, H.R.T., ''Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams,'' Applied Thermal Engineering, Vol 138 ,pp. 465-74, 2018, https://doi.org/10.1016/j.applthermaleng.2018.04.066.
  46. Asiaei, S., Zadehkafi, A., Siavashi, M., ''Multi-layered porous foam effects on heat transfer and entropy generation of nanofluid mixed convection inside a two-sided lid-driven enclosure with internal heating'', Transport in Porous Media, Vol. 126, pp. 223-47, 2019, https://doi.org/10.1007/s11242-018-1166-3.
  47. Viswanathan, A. K., Tafti D. K., “Detached eddy simulation of turbulent flow and heat transfer in a two-pass internal cooling duct'', International Journal of Heat and Fluid Flow, Vol. 27, No. 1, pp. 1-20, 2006, https://doi.org/10.1016/j.ijheatfluidflow.2005.07.002.
  48. Subhankar Ray , Arun K. Tripathy , Sudhansu S. Sahoo, Suneet Singh., “ Effect of Inlet Temperature of Heat Transfer Fluid and Wind Velocity on the Performance of Parabolic Trough Solar Collector Receiver: A Computational '', International Journal of Heat and Technology, Vol. 37, No. 1, March, 2019, pp. 48-58. https://doi.org/10.18280/ijht.370106.
  49. Asish Sarangi, Abhisek Sarangi, Sudhansu Sekhar Sahoo · Ramesh Kumar Mallik · Subhankar Ray · Shinu M. Varghese, “A review of diferent working fuids used in the receiver tube of parabolic trough solar collector”, Journal of Thermal Analysis and Calorimetry (2023) 148:3929–3954. https://doi.org/10.1007/s10973-023-11991-y.
  50. Yanjuan Wang, Qibin L , Jing Lei , “Hongguang Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions”, International Journal of Heat and Mass Transfer 82 (2015) 236–249. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.055.
  51. Yu Qiu, Ming-Jia Li, Ya-Ling He , “Wen-Quan Tao, Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux”, Applied Thermal Engineering 115 (2017) 1255–1265. http://dx.doi.org/10.1016/j.applthermaleng.2016.09.044.
  52. Klein, M, "An attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow", Turbulence and Combustion, Vol. 75, No. 1-4, pp. 131-147, 2005, https://doi.org/10.1007/s10494-005-8581-6.
  53. Pope SB. 2000. Turbulent flows. New York, NY: Cambridge University Press. doi:10.1017/CBO9780511840531.
  54. Klein M. 2005. An attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul Combust. 75(1-4):131–147. doi:10.1007/s10494- 005-8581-6.
  55. Celik IB, Cehreli ZN, Yavuz I. 2005. Index of resolution quality for large eddy simulations. J Fluid Eng. 127(5): 949–958. doi:10.1115/1.1990201