Green synthesis of bis(indolyl)methane scaffolds as valuable biological materials catalyzed by Fe3O4/SiO2/PPA as a magnetic nanocatalyst
- Department of Chemistry, Am.c., Islamic Azad University, Amol, Iran
- Universidad San Sebastián; Facultad de Ingeniería, Arquitectura y Diseño (FIAD); Bellavista 7. 8420524. Santiago. Chile
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
- Department of Basic Sciences, Ga.C. Islamic Azad University, Garmsar, Iran
- ACYS, Faculty of Sciences, Universidad de Extremadura, Badajoz, 06006, Spain
- INTERRA, School of Technology, Universidad de Extremadura, Caceres, 10003, Spain
Received: 2025-07-18
Revised: 2025-09-01
Accepted: 2025-09-18
Published in Issue 2025-10-12
Copyright (c) 2025 Fatemeh Chaltash, Seyed Mohammad Vahdat, Roberto Acevedo , Soheila Ghanbari , Mohammad Qandalee, Carlos J. Durán-Valle , Ignacio M. Lopez-Coca (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 73
Abstract
This study applied Fe3O4/SiO2/PPA magnetic nanocatalyst as a solid acid catalyst to produce bis(indolyl)methane derivatives (BIMs) under solvent-free conditions and at 50Oc. FTIR, XRD, EDX, FESEM, HRTEM, and BET were used for structure confirmation. The catalyst was environmentally friendly, heterogeneous, and recyclable without loss of catalytic activity. Also, this catalyst had high efficiency for the synthesis of bis(indolyl) methanes and the reaction products were obtained quickly. The synthesis of bis(indolyl)methanes from the reaction between indole derivatives and aldehydes has been carried out in short reaction times (5-30 min) with good to excellent yields (65-96%) using 50 mg of magnetic nanocatalyst at solvent-free conditions.
Keywords
- Biological materials,
- Bis(indolyl)methanes,
- Fe3O4/SiO2/PPA,
- Indole,
- Magnetic nanocatalyst,
- Solvent free
References
- T. Osawa, M. Namiki, Structure elucidation of streptindole a novel genotoxic metabolite isolated from intestinal bacteria. Tetrahedron Lett. 24(43) (1983) 4719-4722. https://doi.org/10.1016/S0040-4039(00)86237-1.
- M. Bavafa, S.M. Vahdat, S. Khaksar, Nano γ-Al2O3: Enhancement of catalytic performance in the synthesis of Bis (Indolyl) Methanes. Int. J. Nano Dimens. 13(2) (2022) 227-234. 10.22034/ijnd.2022.687824.
- T.R. Garbe, M. Kobayashi, N. Shimizu, N. Takesue, M. Ozawa, H. Yukawa, Indolyl Carboxylic Acids by Condensation of Indoles with α-Keto Acids. J. Nat. Prod. 63(5) (2000) 596–598. https://doi.org/10.1021/np990517s.
- M. Shiri, M.A. Zolfigol, H. Gerhardus Kruger, Z. Tanbakouchian, Bis- and Trisindolylmethanes (BIMs and TIMs). Chem Rev. 110(4) (2010) 2250–2293. https://doi.org/10.1021/cr900195a.
- A. Kamal, M. Naseer A Khan, K. Srinivasa Reddy, Y.V.V. Srikanth, S. Kaleem Ahmed, K. Pranay Kumar, U.S.N. Murthy, An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. J. Enzyme Inhib. Med. Chem. 24(2) (2009) 559–565. https://doi.org/10.1080/14756360802292974.
- S. B. Bharate, J. B. Bharate, S.I. Khan, B.L. Tekwani, M. R. Jacob, R. Mudududdla, R.R. Yadav, B. Singh, P.R. Sharma, S. Maiy, B. Singh, I.A. Khan, R.A Vishwakarma, Discovery of 3,3′-diindolylmethanes as https://doi.org/10.1016/j.ejmech.2013.02.024.potent antileishmanial agents. Eur. J. Med. Chem. 63 (2013) 435-443.
- E.A.S. Saleh, K.H. Firoz, S. Uthirapathy, M. Asiri, R. M M, M. Kundlas, V.R. Kumar, S. Ray, Z. Sadeq Yousif, H. R. Salman, Recent adveances in catalytic approaches for the synthesis of 3-substituted indoles:mechanisms and strategies. ACS Omega. 16 (2025) 12255-12290. https://doi.org/10.1039/D5RA00871A.
- G. Mohammadi Ziarani, R. Moradi, T. Ahmadi, N. Lashgari, Recent advances in the application of indoles in multicomponent reactions. RSC Advances. 22 (2018) 12069-12103. https://doi.org/10.1039/C7RA13321A.
- T. Ahmad, S. Khan, N. Ullah, Recent Advances in the Catalytic Asymmetric Friedel–Crafts Reactions of Indoles. ACS Omega. 7(40) (2022) 3544635485. https://doi.org/10.1021/acsomega.2c05022.
- P. Teli, S. Soni, S. Teli, Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes. Top Curr Chem. 382(8) (2024). https://doi.org/10.1007/s41061-024-00454-z.
- L. Khanna, Mansi, S. Yadav, N. Misra, P. Khanna, “In water” synthesis of bis(indolyl)methanes: a review. Synthetic Communications. 51(19) (2021) 2892–2923. https://doi.org/10.1080/00397911.2021.1957113.
- P. Kamboj, V. Tyagi, A recent update on the environment friendly methodologies to synthesize bis(indolyl)methane and 3,3-di(3-indolyl)-2-indolone derivatives. Tetrahedron. 148(16) (2023) 133679. https://doi.org/10.1016/j.tet.2023.133679.
- A. Kundu, Ch. Mukhopadhyay, Synthetic Strategies of Highly Bioactive Scaffold Bis(indolyl)methane Under Greener Condition- A Comprehensive Review. Current Topics in Medicinal Chemistry. 25(7) (2024) 779-812. DOI: 10.2174/0115680266319238240821080203.
- P. Bedi, R. Kaur, R. Bose, B. Pakhira, M. Roy, T. Pramanik, Recent Advancement in the Green Synthesis of Bis(indolyl) Methane via One-pot Multicomponent Condensation Strategy – A Mini Review. Oriental Journal of Chemistry. 40(5) (2024) 2231-5039. http://dx.doi.org/10.13005/ojc/400502.
- K. Arjun-Chavan, P.N. Chavan, A. Kumar, R.D. Erande, Cascade approach to synthesize BIMs and analogues in different nucleophilic conditions. Tetrahedron Lett. 148 (2024) 155248. https://doi.org/10.1016/j.tetlet.2024.155248.
- K.A. Chavan, M. Shukla, A. Nath-Singh-Chauhan, S. Maji, G. Mali, S. Bhattacharyya, R.D. Erande, Effective Synthesis and Biological Evaluation of Natural and Designed Bis(indolyl)methanes via Taurine-Catalyzed Green Approach. ACS Omega. 7(12) 2022 10438-10446. DOI:10.1021/acsomega.1c07258
- A. Srivastava, A. Agarwal, S.K. Gupta, N. Jain, Graphene oxide decorated with Cu(i)Br nanoparticles: a reusable catalyst for the synthesis of potent bis(indolyl)methane based anti HIV drugs. RSC Adv. 6 (2016) 23008-23011.https://doi.org/10.1039/C6RA02458K.
- X. Ge, S. Yannai, G. Rennert, N. Gruener, F.A. Fares, 3,3′-Diindolylmethane Induces Apoptosis in Human Cancer Cells. BBRC. 228(1) (1996) 153-158. https://doi.org/10.1006/bbrc.1996.1631.
- R. Contractor, I.J. Samudio, Z. Estrov, D. Harris, J.A. McCubrey, S.H. Safe, M. Andreeff, M. Konopleva, A Novel Ring-Substituted Diindolylmethane,1,1-Bis[3′-(5-Methoxyindolyl)]-1-(p-t-Butylphenyl) Methane, Inhibits Extracellular Signal-Regulated Kinase Activation and Induces Apoptosis in Acute Myelogenous Leukemia. Cancer Res. 65 (7) (2005) 2890–2898. https://doi.org/10.1158/0008-5472.CAN-04-3781.
- J. Lee, 3,3′-Diindolylmethane Inhibits TNF-α- and TGF-β-Induced Epithelial–Mesenchymal Transition in Breast Cancer Cells. Nutr Cancer. 71(6) (2019) 992-1006. https://doi.org/10.1080/01635581.2019.1577979.
- V. Jamsheena, G. Shilpa, J. Saranya, N. Ann Harry, R. S. Lankalapalli, S. Priya, Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells. Chem Biol Interact. 247 (2016) 11-21. https://doi.org/10.1016/j.cbi.2016.01.017.
- A. Pramanik, S. Bharb, Silica–sulfuric acid and alumina–sulfuric acid: versatile supported Brønsted acid catalysts. New Journal of Chemistry. 45(36) (2021) 16355-16388. https://doi.org/10.1039/D1NJ02887A.
- B. Baghernejad, Silica Sulfuric Acid (SSA): An Efficient and Heterogeneous Catalyst for Organic Transformations. Mini-Reviews in Organic Chemistry. 8(1) (2011) 91-102. DOI: 10.2174/157019311793979963.
- M. Mohammadi, M. Khodamorady, B. Tahmasbi, K. Bahrami, A.Ghorbani-Choghamarani, Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. Journal of Industrial and Engineering Chemistry. 97 (2021) 1-78. https://doi.org/10.1016/j.jiec.2021.02.001.
- A. Nikseresht, M. Karami, M. Mohammadi, Phosphotungstic Acid-Supported Hercynite: A Magnetic Nanocomposite Catalyst for the Selective Esterification of Chloroacetic Acid. Langmuir. 40(35) (2024) 18512–18524. https://doi.org/10.1021/acs.langmuir.4c01763.
- S. Esmaili, A. Khazaei, A. Ghorbani-Choghamarani, M. Mohammadi, Silica sulfuric acid coated on SnFe2O4 MNPs: synthesis, characterization and catalytic applications in the synthesis of polyhydroquinolines. RSC Advances. 23 (2022) 14397-14410. https://doi.org/10.1039/D2RA01202B.
- M. Mohammadi, A.Ghorbani-Choghamarani, Hercynite silica sulfuric acid: a novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations. RSC Advances. 40 (2022) 26023-26041. https://doi.org/10.1039/D2RA03481F.
- M. Mohammadi, A.Ghorbani-Choghamarani, Synthesis and characterization of novel hercynite@sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2,3-dihydroquinazolin-4(1H)-ones. RSC Advances. 5 (2022) 2770-2787. https://doi.org/10.1039/D1RA07381H.
- M. Kazemi, M. Mohammadi, Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines. Appl. Organomet. Chem. 34 (2020) e5400. https://doi.org/10.1002/aoc.5400.
- M. Mohammadi and A. Ghorbani-Choghamarani, Synthesis and characterization of novel hercynite@sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2,3-dihydroquinazolin-4(1H)-ones. RSC Adv. 12 (2022) 2770–2787. DOI https://doi.org/10.1039/D1RA07381H.
- S.M. Vahdat, S. Khaksar, S. Baghery, An efficient one-pot synthesis of bis(indolyl)methanes catalyzed by ionic liquid with multi-SO3H groups under ambient temperature in water, World Appl. Sci. J. 15 (2011) 877–884.
- H. Firouzabadi, N. Iranpoor, A.A. Jafari, Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives, J. Mol. Catal. A Chem. 244 (1-2) (2006) 168-172. https://doi.org/10.1016/j.molcata.2005.09.005.
- R. Ghorbani-Vaghei, H. Veisi, Poly(N,N'-dichloro-N-ethyl-benzene-1, 3-disulfonamide) and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide as novel catalytic reagents for synthesis of bis-indolyl, tris-indolyl, di(bis-indolyl), tri(bis-indolyl) and tetra(bis-indolyl)methanes under solid-state, solvent and water conditions. J. Braz. Chem. Soc. 21 (2) (2010) 193-201. https://doi.org/10.1590/S0103-50532010000200002.
- N. Seyedi, H. Khabazzadeh, K. Saidi, Cu1.5PMo12O40 as an efficient, mild and heterogeneous catalyst for the condensation of indole with carbonyl compounds. Mol. Divers. 13(2009) 337–342. https://doi.org/10.1007/s11030-009-9120-5.
- I. Sheikhshoaie, H. Khabazzadeh, S. Saeid-Nia, Iron(III)(salen)Cl as an efficient catalyst for synthesis of bis(indolyl)methanes. Transition Met Chem. 34 (2009) 463–466 https://doi.org/10.1007/s11243-009-9217-9.
- Sh.R. Sheng, Q.Y. Wang, Y. Ding, X.L. Liu, M.Zh. Cai, Synthesis of Bis(indolyl)methanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst. Catal Lett. 128 (2009) 418–422 https://doi.org/10.1007/s10562-008-9767-z.
- M. Rahimizadeh, Z. Bakhtiarpoor, H. Eshghi, M. Pordel, Gh. Rajabzadeh, TiO2 nanoparticles: an efficient heterogeneous catalyst for synthesis of bis(indolyl)methanes under solvent-free conditions. Monatsh Chem. 140 (2009) 1465–1469. https://doi.org/10.1007/s00706-009-0205-8.
- Zh.H. Ma, H.B. Han, Zh.B. Zhou, J. Nie, SBA-15-supported poly(4-styrenesulfonyl(perfluorobutylsulfonyl)imide) as heterogeneous Brønsted acid catalyst for synthesis of diindolylmethane derivatives. J. Mol. Catal. A: Chem. 21 (1-2) (2009) 46-53. https://doi.org/10.1016/j.molcata.2009.06.021.
- S.M. Vahdat, S. Khaksar, S. Baghery, Sulfonated Organic Heteropolyacid Salts: Recyclable Green Solid Catalysts for the Highly Efficient and Green Synthesis of Bis(indolyl)methanes in Water. Lett. Org. Chem. 9 (2012) 138-144. https://doi.org/10.2174/157017812800221690.
- V.D. Patil, G.B. Dere, P.A. Rege, J.J. Patil, Synthesis of Bis(indolyl) Methanes in Catalyst- and Solvent-Free Reaction. Synth. Commun. 41(5), 736–747. https://doi.org/10.1080/00397911003642690.
- M. Greger, T. Landberg, Equisetum arvense as a silica fertilizer. PPB. 210 (2024) 108606. https://doi.org/10.1016/j.plaphy.2024.108606.
- N. Hosseini Mohtasham, M. Gholizadeh, Nano silica extracted from horsetail plant as a natural silica support for the synthesis of H3PW12O40 immobilized on aminated magnetic nanoparticles (Fe3O4@SiO2-EP-NH-HPA): a novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3- c]pyrazole derivatives. Chem. Intermed. 46 (2020) 3037–3066. https://doi.org/10.1007/s11164-020-04133-8.
- E. Ahmadi, A. Khazaei, T. Akbarpour, [Fe3O4@CQD@Si(OEt)(CH2)3NH@CC@Ad@SO3H]+Cl−: As a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for the synthesis of 5-amino-1,3-diphenyl-1H-pyrazole 4-carbonitril and pyrano[2,3-c] pyrazole derivatives. Chem. Intermed. 49 (2023) 2099–2122. https://doi.org/10.1007/s11164-022-04919-y.
- D. Maciel Carneiro, T. Veiga Jardim , Y.C. Luciana Araújo , A. Carolina Arantes , A. Cristina de Sousa , W. Kunz Sebba Barroso, A. Luiza Lima, Equisetum arvense: New Evidences Supports Medical use in Daily Clinic. Pharmacogn Rev. 13 (26) (2019) 50-58. 10.5530/phrev.2019.2.4.
- R. Maria Ferreira da Costa e Silva, I. Márcia Alves Diniz, J. Maria da Fonte Ferreira, Extracts and Composites of Equisetum for Bone Regeneration Living reference work entry. Springer. Cham. (2022) 1–27. https://doi.org/10.1007/978-3-030-97415-2_31-1.
- N. Karami, A. Mohammadpour, M.R. Samaei, A.M. Amani, M. Dehghani, R. er S. Varma, J. N. Sahu, Green synthesis of sustainable magnetic nanoparticles Fe3O4 and Fe3O4-chitosan derived from Prosopis farcta biomass extract and their performance in the sorption of lead(II). Int. J. Biol. Macromol. 254 (1) (2024) 127663. https://doi.org/10.1016/j.ijbiomac.2023.127663.
- L. Chen, T. Gao, X. Wu, M. He, X. Wang, F. Teng, Y. Li, Polycarboxylate functionalized magnetic nanoparticles Fe3O4@SiO2@CS-COOH: Preparation, characterization, and immobilization of bovine serum albumin. Int. J. Biol. Macromol. 260 (2) (2024) 129617. https://doi.org/10.1016/j.ijbiomac.2024.129617.
- A.S. Elshimy, M. Mobarak, J.S. Ajarem, S.N. Maodaa, A. Bonilla-Petriciolet, Z. Li, M.A. Korany, D.S. Ammar, D.G. Awad, Sh.A. Elberbash, M.K. Seliem, Sodium alginate-modified alkali-activated eggshell/Fe3O4 nanoparticles: A magnetic bio-based spherical adsorbent for cationic dyes adsorption. Int. J. Biol. Macromol. 256 (2) (2024) 128528. https://doi.org/10.1016/j.ijbiomac.2023.128528.
- A. Mathew, A. Jayaprakash, A. Mundakassery Ratnamma, S. Paleri Veetil, Z. Pallimittath Hamza, A. Sivarajan, R. Pooppanathara Kochappan, R. Kudukkil Thahathuveettil, J. Jose, K. Jacob, F. Kanjirathamthadathil Saidu, Evaluation of the catalytic and in-vitro anticancer potential of Gold nanoparticles synthesized using clammy cherry (Cordia Obliqua Willd). Int. J. Nano Dimens. Accepted Manuscipt. https://doi.org/10.57647/j.ijnd.2025.1604.30.
- S. Acharya, A. Behera, A. CS, S. Venugopal, R. Thiyagarajan, Thirunavukkarasu Chinnasamy Green-synthesized Titanium Dioxide nanoparticles with Pyrogallol functionalization: A novel approach using cow dung extract for anticancer applications. Int. J. Nano Dimens. Accepted Manuscipt. https://doi.org/10.57647/j.ijnd.2025.1603.17.
- R. Shaik, A. Buggana, V. Thalari, S. Rani. E, K. Bandari, N. Golla, Green synthesis, characterization, and biological activities of copper nanoparticles using Clitoria ternatea leaf extract. Int. J. Nano Dimens. 16 (1) (2025) 162505 (1-12). https://dx.doi.org/10.57647/j.ijnd.2025.1601.05.
- Sh. Yazdani, M. Hatami, S.M. Vahdat, The chemistry concerned with the sonochemical-assisted synthesis of CeO2/poly(amic acid) nanocomposites. Turk. J. Chem. 38 (3) (2014) 388-401. doi:10.3906/kim-1306-33.
- N. Hosseini-Mohtasham, M. Gholizadeh, Horsetail plant (Equisetum arvense) and horsetail plant ash: application and comparison of their catalytic activities as novel and natural porous lewis acid catalysts for the one pot green synthesis of 2 amino 4H chromene derivatives under solvent free conditions. JICS. 17 (2020) 397–409. https://doi.org/10.1007/s13738-019-01777-1.
- A. Hassankhani, S.M. Sadeghzadeh, R. Zhiani, C–C and C–H coupling reactions by Fe3O4/KCC-1/APTPOSS supported palladium-salen-bridged ionic networks as a reusable catalyst. RSC Adv. 8 (2018) 8761-8769. https://doi.org/10.1039/C8RA00485D.
- D. An, Y. Guo, Y. Zhu, Z. Wang, A Green Route to Preparation of Silica Powders with Rice Husk Ash and Waste Gas. J. Chem. Eng. 162(2) (2010) 509-514. doi:10.1016/j.cej.2010.05.052.
- F. Adam, K. Kandasamy, S. Balakrishnan, Iron incorporated heterogeneous catalyst from rice husk ash. Journal of Colloid and Interface Science. 304(1) (2006) 137-143. https://doi.org/10.1016/j.jcis.2006.08.051.
- F. Amarloo, R. Zhiani, J. Mehrzad, Novel Fe3O4/SiO2/PPA Magnetic Nanoparticles: Preparation, Characterization, and First Catalytic Application to the Solvent-Free Synthesis of Tetrahydrobenzo[a]xanthene-11-ones. Russ. J. Org. Chem. 55(10) (2019) 1584–1590. DOI: 10.1134/S1070428019100191.
- R. Tayebee, A. Pejhan, H. Ramshini, B. Maleki, N. Erfaninia, Z. Tabatabaie, Effat Esmaeili, Equisetum arvense as an abundant source of silica nanoparticles. SiO2/H3PW12O40 nanohybrid material as an efficient and environmental benign catalyst in the synthesis of 2‐amino‐4Hchromenes under solvent‐free conditions. Appl Organometal Chem. (2017) e3924. https://doi.org/10.1002/aoc.3924.
- D. Habibi, Sh. Kaamyabi, H. Hazarkhani, Fe3O4 nanoparticles as an efficient and reusable catalyst for the solvent‐free synthesis of 9,9‐dimethyl‐9,10‐dihydro‐8H‐benzo‐[a]xanthen‐11(12H)‐ones. Chinese Journal of Catalysis. 36 (2015) 362–366. DOI: 10.1016/S1872‐2067(14)60238‐2.
- S.R. Mendes, S. Thurow, M.P. Fortes, F. Penteado, E.J. Lenardão, D. Alves, G. Perin, R.G. Jacob, Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface. Tetrahedron Lett. 53 (2012) 5402–5406. https://doi.org/10.1016/j.tetlet.2012.07.118.
- G. Chen, C.Y. Guo, H. Qiao, M. Ye, X. Qiu, C. Yue, Well-dispersed sulfated zirconia nanoparticles as high-efficiency catalysts for the synthesis of bis(indolyl)methanes and biodiesel. Catal. Commun. 41 (2013) 70-74. https://doi.org/10.1016/j.catcom.2013.07.006.
- S. Khaksar, M. Tajbakhsh, M. Gholami, Polyvinylpolypyrrolidone-supported triflic acid (PVPP·OTf) as a new, efficient, and recyclable heterogeneous catalyst for the synthesis of bis-indolyl methane derivatives. C. R. Chim. 17 (1) (2014) 30-34. https://doi.org/10.1016/j.crci.2013.07.014.
- H. Veisi, M. Ataee, P. Darabi-Tabar, E. Amiri, A.R. Faraji, One-pot conversion of aromatic compounds to the corresponding bis(indolyl)methanes by the Vilsmeier–Haack reaction. C. R. Chim. 17 (4) (2014) 305-309. 10.1016/j.crci.2013.09.011.
- H.T.D. Nguyen, T.T. Nguyen, Ph.T.K. Nguyen, Ph.H. Tran, A highly active copper-based metal-organic framework catalyst for a friedel–crafts alkylation in the synthesis of bis(indolyl)methanes under ultrasound irradiation. Arab. J. Chem. 13 (2020) 1377–1385. http://creativecommons.org/licenses/by-nc-nd/4.0/.
- G.M. Patel, A.S Kure, G.G. Mandawad, B.S. Hote, Sh.G. Konda, Chitosan supported ionic liquid (CSIL): An excellent catalyst for one-pot synthesis of bis(indolyl)methanes. Result chem. 4 (2022) 100436. https://doi.org/10.1016/j.rechem.2022.100436.
10.57647/ijnd-2026-1702-07
