10.57647/ijnd-2026-1702-05

Synthesis of Potassium-Silica Nanofluid Fertilizer from Banana Peel and Rice Husk Waste for The Growth of Sweet Corn Plants

  1. Department of Chemistry, Universitas Islam Kadiri, Jl. Sersan Suharmaji No.38 Kota Kediri, Indonesia
  2. Department of Agrotechnology, Universitas Islam Kadiri, Jl.Sersan Suharmaji No.38 Kota Kediri, Indonesia
  3. Chemistry Department, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Surabaya, Indonesia

Received: 2025-04-23

Revised: 2025-06-04

Accepted: 2025-08-30

Published in Issue 2025-10-12

How to Cite

Rosanti, A. D., Fitriyah, N., Rahmatika, W., Hidayat, F., Helilusiatiningsih, N., Kusumawati , Y., Lailun Ni’mah, Y., & Oktavia, D. (2025). Synthesis of Potassium-Silica Nanofluid Fertilizer from Banana Peel and Rice Husk Waste for The Growth of Sweet Corn Plants. International Journal of Nano Dimension, 17(2 (April 2026). https://doi.org/10.57647/ijnd-2026-1702-05

PDF views: 52

Abstract

The increasing market demand for sweet corn has made it a widely cultivated crop among local farmers. One method of enhancing sweet corn productivity is combining potassium sulfate nanofertilizers from banana peel waste and nanosilica from rice husk waste. Nanosilica was synthesized using the sol–gel method; nanopotassium sulfate was synthesized by precipitating potassium using ammonium sulfate. Characterization results from FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-Ray Diffraction), FESEM-EDX (Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray), and TEM (Transmission Electron Microscopy) showed that the potassium–silica nanofluid fertilizer had a particle size of 8.6 nm. A single application of nanosilica enhanced the vegetative growth of sweet corn. Applying nanopotassium sulfate significantly increased plant height, especially in the S3W1 treatment 28 DAS (days after sowing). The combination of application time and concentration of potassium–silica nanofluid fertilizer had a significant effect on plant height. Best results were obtained with a concentration of 5 mL applied 35 DAS.

References

  1. V. Yakovlev and I. Pozdnikin, “Impact of organic fertilization techniques on Sweet Corn (Zea mays L. var. Saccharata) yield and quality,” International Journal of Social Science and Education Research, vol. 5, no. 1, pp. 38–40, Jan. 2023, doi: 10.33545/26649845.2023.v5.i1a.78.
  2. F. Zulfiqar, M. Navarro, M. Ashraf, N. A. Akram, and S. Munné-Bosch, “Nanofertilizer use for sustainable agriculture: Advantages and limitations,” Plant Science, vol. 289, no. July, 2019, doi: 10.1016/j.plantsci.2019.110270.
  3. A. Nongbet, A. K. Mishra, Y. K. Mohanta, S. Mahanta, M. K. Ray, M. Khan, K. H. Baek, and I. Chakrabartty,“Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture,” Plants, vol. 11, no. 19, pp. 1–20, 2022, doi: 10.3390/plants11192587.
  4. A. Ali, M. Adnan, M. E. Safdar, and M. Asif, “Role of potassium in enhancing growth, yield and quality of maize (Zea mays L.),” International Journal of Biosciences (IJB), no. June, 2020, doi: 10.12692/ijb/16.6.210-219.
  5. S. H. Abd-Elrahman, Y. A. E. G. El-Gabry, F. A. Hashem, M. F. M. Ibrahim, E. I. El-Hallous, Z. K. Abbas, D. B. E. Darwish, N. A. Al-Harbi, S. M. Al-Qahtani, and N. M. Taha, “Influence of Nano-Chitosan Loaded with Potassium on Potassium Fractionation in Sandy Soil and Strawberry Productivity and Quality,” Agronomy, vol. 13, no. 4, pp. 1–15, 2023, doi: 10.3390/agronomy13041126.
  6. N. Chairuman, S. F. Batubara, V. Aryati, and D. R. Siagian, “Enhancing the maize growth and production by applying the phosphorus and potassium nutrients in inceptisol of Langkat Regency,” IOP Conf Ser Earth Environ Sci, vol. 1172, no. 1, 2023, doi: 10.1088/1755-1315/1172/1/012042.
  7. K. N. Franck, N. M. Eustache, K. Seya, B. B. Innocent, K. Franck, L. Leontine, M. B. Israel, B. Mingashanga, M. M. Edouard, N. N. Cedric, M. Gaillard, and B. John, “Synthesis of a Potassium Fertilizer from Banana Peels and its Fertility effect on Onion Growth and Ripening in Lubumbashi Synthesis of a Potassium Fertilizer from Banana Peels and its Fertility effect on Onion Growth and Ripening in Lubumbashi,” no. January 2021, pp. 9–21, 2020.
  8. Hariyono, Mulyono, and I. Q. Ayunin, “Effectiveness of Banana Peel-Based Liquid Organic Fertilizer Application as Potassium Source for Eggplant (Solanum melongena L.) Growth and Yield,” IOP Conf Ser Earth Environ Sci, vol. 752, no. 1, 2021, doi: 10.1088/1755-1315/752/1/012022.
  9. F. K. Nisa and Y. S. Rahayu, “Pengaruh Pupuk Organik Cair Nabati dan Silika Terhadap Pertumbuhan Tanaman Kedelai (Glycine Max) Yang Mengalami Cekaman Air,” LenteraBio : Berkala Ilmiah Biologi, vol. 11, no. 1, pp. 80–88, 2021, doi: 10.26740/lenterabio.v11n1.p80-88.
  10. L. P. Santi, “Pemanfaatan Bio-Silika untuk Meningkatkan Produktivitas dan Ketahanan Terhadap Cekaman kekeringan pada Kelapa Sawit,” Prosiding Seminar Nasional Pengembangan Pertanian Berkelanjutan yang Adaptif Terhadap Perubahan Iklim Menuju Ketahanan Pangan dan Energi, vol. 53, no. 9, pp. 456–466, 2016.
  11. N. S. Amalya, A. Yuniarti, A. Setiawan, and Y. Machfud, “The Effect of N, P, K Fertilizer and Nano Silica Fertilizer to Total N Content, N Uptake, and Black Rice Yield (Oryza sativa L. Indica) on Inceptisols from Jatinangor,” Journal of Plant Sciences, vol. 8, no. 5, p. 185, 2020, doi: 10.11648/j.jps.20200805.21.
  12. M. Huljana and S. Rodiah, “Sintesis Silika dari Abu Sekam Padi dengan Metode Sol-gel | Huljana | Prosiding Seminar Nasional Sains dan Teknologi Terapan,” in Seminar Nasional Sains dan Teknologi Terapan, 2019, pp. 1–8.
  13. D. Abhigna, K. Lakshman, and P. N. Siva Prasad, “Nano-fertilizers for Sustainable Agriculture,” Chronicle Of Bioresource Management, vol. 5, no. 2, pp. 037–040, 2021.
  14. A. Novelia, A. Zakiyah, and Y. Kusumawati, “The removal of methylene blue solutions using zinc oxide nanoparticles prepared by polyol method,” AIP Conf Proc, vol. 2818, no. 1, p. 40002, Aug. 2023, doi: 10.1063/5.0131360.
  15. A. D. Rosanti, Y. Kusumawati, F. Hidayat, A. Fadlan, A. R. K. Wardani, and H. A. Anggraeni, “Adsorption of Methylene Blue and Methyl Orange from Aqueous Solution using Orange Peel and CTAB-Modified Orange Peel,” Journal Of the Turkish Chemical Society Chemistry, vol. 9, no. 1, pp. 237–246, 2022, doi: https://doi.org/10.18596/jotcsa.1003132.
  16. D. V. Wellia, Y. Kusumawati, L. J. Diguna, N. Pratiwi, R. A. Putri, and M. I. Amal, “Mesoporous Materialsfor Degradation of Textile Dyes,” in Green Methods for Wastewater Treatment. Environmental Chemistry for a Sustainable World, Springer, 2019, pp. 255–288.
  17. H. Juwono, A. Zakiyah, R. Subagyo, and Y. Kusumawati, “Facile Production of Biodiesel from Candlenut Oil (Aleurites moluccana L.) Using Photocatalytic Method by Nano Sized-ZnO Photocatalytic Agent Synthesized via Polyol Method,” Indonesian Journal of Chemistry, vol. 23, no. 5, pp. 1304–1314, 2023, doi: 10.22146/ijc.82895.
  18. E. Santoso, R. Ediati, Z. Istiqomah, D. O. Sulistiono, R. E. Nugraha, Y. Kusumawati, H. Bahruji, and D. Prasetyoko, “Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue,” Microporous and Mesoporous Materials, vol. 310, p. 110620, 2021, doi: https://doi.org/10.1016/j.micromeso.2020.110620.
  19. Babak Azari, Afshin Pourahman, Babak Sadeghi, and Masoud Mokhtary, “Green synthesis of SiO2 from Equisetnm arvense plant for synthesis of SiO2/ZIF-8 MOF nanocomposite as photocatalyst,” Submit an article Journal of Coordination Chemistry, vol. 76, no. 2, pp. 219–231, Jan. 2023.
  20. Y. L. Ni’mah, Z. H. Muhaiminah, and Suprapto, “Synthesis of silica nanoparticles from sugarcane bagasse by sol-gel method,” AIP Conf Proc, vol. 2540, no. 1, p. 50011, Jan. 2023, doi: 10.1063/5.0107310.
  21. H. S. Hussein, H. H. Shaarawy, N. H. Hussien, and S. I. Hawash, “Preparation of nano-fertilizer blend from banana peels,” Bull Natl Res Cent, vol. 43, no. 1, pp. 1–9, 2019, doi: 10.1186/s42269-019-0058-1.
  22. C. Van Hoang, D. N. Thoai, N. T. D. Cam, T. T. T. Phuong, N. T. Lieu, T. T. T. Hien, D. N. Nhiem, T. D. Pham, M. H. T. Tung, N. T. T. Tran, A. Mechler, and Q. V. Vo, “Large-Scale Synthesis of Nanosilica from Silica Sand for Plant Stimulant Applications,” ACS Omega, vol. 7, no. 45, pp. 41687–41695, 2022, doi: 10.1021/acsomega.2c05760.
  23. M. D. Nur Hayati, A. D. Rosanti, and P. S. Utomo, “Pengaruh Dosis Pupuk Nanosilika Sekam Padi Pada Pertumbuhan Dan Produksi Jagung Manis (Zea Mays Saccharata Sturt L.) Varietas Talenta,” Jurnal Pertanian Cemara, vol. 18, no. 2, pp. 46–54, 2021, doi: 10.24929/fp.v18i2.1633.
  24. A. Subagio, E. Prihastanti, and K. Rowi, “Fabrication of NanoChiSil for Application of Fertilizer,” pp. 113–116, 2015.
  25. J. Shrestha, “P-Value: a true test of significance in agricultural research,” Nov. 2023. doi: https://dx.doi.org/10.2139/ssrn.4592804.
  26. L. J. Williams and H. Abdi, “Encyclopedia of Research Design,” 2010. [Online]. Available: http://www.utd.edu/∼herve
  27. I. Sholikha, F. W. K., E. D. S. Utami, Listiyanti, and D. Widyaningsih, “Sintesis Dan Karakterisasi Silika Gel Dari Limbah Abu Sekam Padi (Oryza Sativa) Dengan Variasi Konsentrasi Pengasaman,” Pelita, vol. V, no. 2, pp. 1–13, 2010.
  28. E. Rafiee, S. Shahebrahimi, M. Feyzi, and M. Shaterzadeh, “Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material),” Int Nano Lett, vol. 2, no. 1, pp. 1–8, 2012, doi: 10.1186/2228-5326-2-29.
  29. P. A. Handayani, E. Nurjanah, and W. D. P. Rengga, “Pemanfaatan Limbah Sekam Padi Menjadi Silika Gel,” Jurnal Bahan Alam Terbarukan, vol. 3, no. 2, pp. 55–59, 2014, doi: 10.15294/jbat.v3i2.3698.
  30. M. Meliyana, C. Rahmawati, and L. Handayani, “Sintesis Silika Dari Abu Sekam Padi Dan Pengaruhnya Terhadap Karakteristik Bata Ringan,” Elkawnie, vol. 5, no. 2, p. 164, 2019, doi: 10.22373/ekw.v5i2.5533.
  31. R. Z. Farhan and S. E. Ebrahim, “Preparing nanosilica particles from rice husk using precipitation method,” Baghdad Science Journal, vol. 18, no. 3, pp. 494–500, 2021, doi: 10.21123/BSJ.2021.18.3.0494.
  32. S. Rades, V. D. Hodoroaba, T. Salge, T. Wirth, M. P. Lobera, R. H. Labrador, K. Natte, T. Behnke, T. Gross, and W. E. S. Unger, “High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles,” RSC Adv, vol. 4, no. 91, pp. 49577–49587, 2014, doi: 10.1039/c4ra05092d.
  33. A. Royani, E. Sulistiyono, and D. Sufiandi, “Pengaruh Suhu Kalsinasi Pada Proses Dekomposisi Dolomit,” Jurnal Sains Materi Indonesia, vol. 18, no. 1, p. 41, 2018, doi: 10.17146/jsmi.2016.18.1.4186.
  34. A. Maksum, A. Rustandi, S. Permana, and J. W. Soedarsono, “Influence of roasting-quenching pretreatment on the rice husk silica prepared by calcination method,” AIP Conf Proc, vol. 1823, no. March, 2017, doi: 10.1063/1.4978082.
  35. T. Tyner and J. Francis, “Potassium Sulfate,” International Plant Nutrition Institute, no. 5. p. 30092, 2019. doi: 10.1021/acsreagents.4308.20170301.
  36. E. Jasmine Vasantha Rani, K. Karthika, N. Saranya, and R. Padmavathy, “The influence of temperature and sonication on the preparation of doped polymeric nano particles,” Int J Chemtech Res, vol. 6, no. 13, pp. 5168–5173, 2014.
  37. B. M. Ayenew, N. Satheesh, Z. B. Zegeye, and D. A. Kassie, “A review on the production of nanofertilizers and its application in agriculture,” Jan. 15, 2025, Elsevier Ltd. doi: 10.1016/j.heliyon.2024.e41243.
  38. D. Sartika, A. Patappari, M. R. Rahmatullah, and I. Junais, “Application of slow-release NPK fertilizer on the growth of sweet corn plants (Zea Mays L.),” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2025. doi: 10.1088/1755-1315/1471/1/012007.
  39. M. Ayman, S. Metwally, M. Mancy, and A. Abd alhafez, “Influence of Nano–Silica on Wheat Plants Grown in Salt–Affected Soil,” Journal of Productivity and Development, vol. 25, no. 3, pp. 279–296, 2020, doi: 10.21608/jpd.2020.120786.
  40. R. Suriyaprabha, G. Karunakaran, R. Yuvakkumar, P. Prabu, V. Rajendran, and N. Kannan, “Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil,” Journal of Nanoparticle Research, vol. 14, no. 12, 2012, doi: 10.1007/S11051-012-1294-6.
  41. H. F. Putri and H. Sri, “Pengaruh Penggunaan Pupuk Nanosilika terhadap Pertumbuhan Tanaman Tomat (Solanum lycopersicum) var. Bulat,” Buletin Anatomi dan Fisiologi, vol. 24, no. 1, pp. 34–41, 2016.
  42. N. A. Utama, T. Hidayat, and M. Mulyono, “Nanosilika Sebagai Upaya Pengendalian Penyakit Bawang Merah Di Kretek, Bantul,” Prosiding Seminar Nasional Program Pengabdian Masyarakat, pp. 1813–1818, 2021, doi: 10.18196/ppm.38.246.
  43. G. Karunakaran, R. Suriyaprabha, P. Manivasakan, R. Yuvakkumar, V. Rajendran, P. Prabu, and N. Kannan, “Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination,” IET Nanobiotechnol, vol. 7, no. 3, pp. 70–77, 2013, doi: 10.1049/iet-nbt.2012.0048.
  44. P. Aqaei, W. Weisany, M. Diyanat, J. Razmi, and P. C. Struik, “Response of maize (Zea mays L.) to potassium nano-silica application under drought stress,” J Plant Nutr, vol. 43, no. 9, pp. 1205–1216, 2020, doi: 10.1080/01904167.2020.1727508.
  45. S. P. Kumar, M. M. Yassin, S. Marimuthu, M. Kalarani, S. Thiyageshwari, S. Thiyageshwari, and G. Meenakshi, “Impact of nano-silica foliar application on growth and yield parameters in sweetcorn (Zea mays L. saccharata),” International Journal of Research in Agronomy, vol. 7, no. 7, pp. 567–571, 2024, doi: 10.33545/2618060x.2024.v7.i7g.1093.
  46. E. Prihastanti, A. Subagyo, and N. Ngadiwiyana, “Effect of combination of NPK and nano silica on the levels of β-carotene and nutritional value of corn (Zea mays L.),” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Dec. 2018. doi: 10.1088/1757-899X/434/1/012117.
  47. S. Dara Sabatini, R. Budihastuti, S. Widodo Agung Suedy, and A. Subagio, “Nanosilika Production and Content of Anthocyanins in Red Rice after Giving Nanosilika Fertilizer,” Buletin Anatomi dan Fisiologi, vol. 6, no. 1, p. 81, Feb. 2021, doi: https://doi.org/10.14710/baf.6.1.2021.81-89.
  48. A. A. Ali, N. K. Elgizawy, H. M. Salem, M. A. Bassuony, and T. M. Salem, “Influence Of Nano-silica foliar application on growth and yield of Maize (Zea mays L.)under Drought stress condition,” Benha Journal of Applied Sciences, no. 9, p. 2024, 2024, doi: 10.21608/bjas.2024.267108.1316.
  49. M. E. El-Naggar, N. R. Abdelsalam, M. M. G. Fouda, M. I. Mackled, M. A. M. Al-Jaddadi, H. M. Ali, M. H. Siddiqui, and E. E. Kandil, “Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest,” Nanomaterials, vol. 10, no. 4, Apr. 2020, doi: 10.3390/nano10040739.
  50. J. Sardans and J. Peñuelas, Potassium control of plant functions: Ecological and agricultural implications, vol. 10, no. 2. 2021. doi: 10.3390/plants10020419.
  51. M. Sustr, A. Soukup, and E. Tylova, “Potassium in root growth and development,” Oct. 01, 2019, MDPI AG. doi: 10.3390/plants8100435.
  52. L. Wilmer, E. Pawelzik, and M. Naumann, “Comparison of the Effects of Potassium Sulphate and Potassium Chloride Fertilisation on Quality Parameters, Including Volatile Compounds, of Potato Tubers After Harvest and Storage,” Front Plant Sci, vol. 13, no. July, 2022, doi: 10.3389/fpls.2022.920212.
  53. M. M. Rady, A.-T. H. Mossa, A. M. A. Youssof, A. Sh. Osman, S. M. A. Ahmed, and I. A. A. Mohamed, “Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants,” Sci Hortic, vol. 308, Jan. 2023, doi: https://doi.org/10.1016/j.scienta.2022.111609.
  54. Q. Wang, C. Shan, P. Zhang, W. Zhao, G. Zhu, Y. Sun, Q. Wang, Y. Jiang, N. Shakoor, and Y. Rui, “The combination of nanotechnology and potassium: applications in agriculture,” Environ Sci Pollut Res Int, vol. 31, no. 2, pp. 1890–1906, 2023, doi: 10.1007/s11356-023-31207-y.
  55. N. Fitriyah, W. Rahmatika, and S. Melya Contesya, “Kombınası Pupuk Kandang Kambıng Dan Kalıum Nıtrat (KNO3) Terhadap Pertumbuhan Dan Kecepatan Berbunga Jagung Manıs (Zea mays saccharata),” VIABEL: Jurnal Ilmiah Ilmu-Ilmu Pertanian, vol. 18, no. 1, pp. 40–48, 2024, doi: 10.35457/viabel.v18i1.3407.
  56. S. J. Leghari, N. A. Wahocho, G. M. Laghari, A. H. Laghari, G. M. Bhabhan, K.H.Talpur, and A. A. Lashari, “Role of nitrogen for plant growth and development: A review.,” Adv Environ Biol, vol. 10, no. 9, pp. 209–218, 2016.
  57. F. M. Putri, S. W. A. Suedy, and S. Darmanti, “Pengaruh Pupuk Nanosilika Terhadap Jumlah Stomata, Kandungan Klorofil dan Pertumbuhan Padi Hitam (Oryza sativa L. cv. japonica),” Buletin Anatomi dan Fisiologi, vol. 2, no. 1, p. 72, 2017, doi: 10.14710/baf.2.1.2017.72-79.
  58. A. Y. Ghidan, T. M. Al-Antary, A. M. Awwad, and J. Y. Ayad, “Physıologıcal Effect Of Some Nanomaterıals On Pepper (Capsıcum Annuum L.),” Fresenius Environ Bull, vol. 27, no. 11, pp. 7872–7878, 2018.
  59. A. R. Puspitasari, D. Ariyani, and R. P. Putra, “Aplikasi Pupuk Nano Cair Pada Fase Pertumbuhan Vegetatif Tebu,” Indonesian Sugar Research Journal, vol. 3, no. 2, pp. 64–71, 2023, doi: 10.54256/isrj.v3i2.112.
  60. Y. Xing and X. Wang, “Precise application of water and fertilizer to crops: challenges and opportunities,” Front Plant Sci, vol. 15, no. December, pp. 1–17, 2024, doi: 10.3389/fpls.2024.1444560.
  61. K. Atta, S. Mondal, S. Gorai, A. P. Singh, A. Kumari, T. Ghosh, A. Roy, S. Hembram, D. J. Gaikwad, S. Mondal, S. Bhattacharya, U. C. Jha, and D. Jespersen, “Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection,” Front Plant Sci, vol. 14, no. September, pp. 1–21, 2023, doi: 10.3389/fpls.2023.1241736.
  62. D. V. M. Assaha, A. Ueda, H. Saneoka, R. Al-Yahyai, and M. W. Yaish, “The role of Na+ and K+ transporters in salt stress adaptation in glycophytes,” Front Physiol, vol. 8, no. JUL, 2017, doi: 10.3389/fphys.2017.00509.
  63. D. da Silva Magalhães, I. de J. Matos Viegas, H. da Silva Barata, M. G. Costa, B. C. da Silva, and W. Y. W. de Lima Mera, “Deficiencies of nitrogen, calcium, and micronutrients are the most limiting factors for growth and yield of smell pepper plants,” Revista Ceres, vol. 70, no. 3, pp. 125–135, 2023, doi: 10.1590/0034-737X202370030013.
  64. M. N. T. Alfy and T. Handoyo, “Pengaruh Dosis dan Waktu Aplikasi Pupuk KCl Terhadap Pertumbuhan dan Hasil Tanaman Buncis (Phaseolus vulgaris L.),” Agriprima : Journal of Applied Agricultural Sciences, vol. 6, no. 1, pp. 85–97, 2022, doi: 10.25047/agriprima.v6i1.431.
  65. M. Zhang, Y. Hu, W. Han, J. Chen, J. Lai, and Y. Wang, “Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance,” Crop Journal, vol. 11, no. 4, pp. 1048–1058, 2023, doi: 10.1016/j.cj.2023.02.009.
  66. M. S. Alfian and H. Purnamawati, “Dosis dan Waktu Aplikasi Pupuk Kalium pada Pertumbuhan dan Produksi Jagung Manis di BBPP Batangkaluku Kabupaten Gowa Sulawesi Selatan,” Buletin Agrohorti, vol. 7, no. 1, pp. 8–15, 2019, doi: 10.29244/agrob.v7i1.24404.