Oriented external electric field effect on the adsorption of vanadocene dichloride (VDC) anticancer drug on C@Al12 cluster
- Department of Chemistry, ET.C., Islamic Azad University, Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, University of Medical Sciences, Tehran, Iran
- Department of Research and Development, DNA Chemical Co., Tehran, Iran
Received: 2025-08-03
Revised: 2025-09-01
Accepted: 2025-09-03
Published in Issue 2025-10-12
Copyright (c) 2025 Reza Ghiasi, Alireza Valizadeh, Aram Afkhami (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 25
Abstract
This work examined the oriented external electric field (OEEF) along x, y, and z-axes in the interaction between vanadocene dichloride (VDC) anticancer drug and C@Al12 cluster. OEEF effect on the electronic energy and interaction energy values was studied. These results indicated weaker adsorption in VDC…C@Al12 complex in the presence of OEEF along the z-axis than x, and y-axes. Variations of polarity and frontier orbital energy values of the molecule with strength of OEEF were reported. Greater polarity was found with higher OEEF strength. The most contribution in the SOMO and LUMO of the VDC…C@Al12 complex were belonged to C@Al12 and VDC moieties, respectively. Also, dependencies of reactivity parameters on OEEF strength were provided. Cl×××Al interactions were illustrated with electron localization function (ELF) and charge displacement curves (CDC) results.
Keywords
- Charge displacement curves (CDC),
- C@Al12 (E=C, Si) cluster,
- Electron localization function (ELF),
- Oriented external electric field (OEEF),
- Vanadocene dichloride (VDC)
References
- Köpf-Maier P., Krahl D., (1983), Tumor inhibition by metallocenes: Ultrastructural localization of titanium and vanadium in treated tumor cells by electron energy loss spectroscopy. Chem.-Biol. Interact. . 44: 317−328,doi 10.1016/0009-2797(83)90059-5.
- Köpf-Maier P., Köpf H., (1987), Non-platinum group metal antitumor agents. History, current status, and perspectives. Chem. Rev. 87: 1137−1152,doi 10.1007/s002800050838.
- Lümmen G., Sperling H., Luboldt H., Otto T., Rübben H., (1998), Phase II trial of titanocene dichloride in advanced renal-cell carcinoma. Cancer Chemother. Pharmacol. 42: 415−417,doi 10.1007/s002800050838.
- Kröger N., Kleeberg U.R., Mross K., Edler L., Hossfeld D.K., (2000), Phase II clinical trial of titanocene dichloride in patients with metastatic breast cancer. Onkologie 23: 60−62,doi 10.1159/000027075.
- Toney J.H., Marks T.J., (1985), Hydrolysis Chemistry of the Metallocene Dichlorides M(h5-C5H5)2C12, M = Ti, V, Zr. Aqueous Kinetics, Equilibria, and Mechanistic Implications for a New Class of Antitumor Agents. J. Am. Chem. Soc. 107: 947-953,doi 10.1021/ja00290a033.
- Yoshikawa Y., Sakurai H., Crans D.C., Micera G., Garribba E., (2014), Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Trans. 43: 6965–6972,doi 10.1039/C3DT52895B.
- Page A.J., Saha S., Li H.B., Irle S., Morokuma K., (2015), Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition. J. Am. Chem. Soc. 137: 9281-9288,doi 10.1021/jacs.5b02952.
- Deshpande M.D., Kanhere D.G., (2003), Ab initio absorption spectra of Aln (n =2–13) clusters. Phys. Rev. B. 68: 035428,doi 10.1103/PhysRevB.68.035428.
- Aguado A., López J.M., (2009), Structures and stabilities of Al+n, Aln,, and Al-n (n=13-34 clusters. J. Chem. Phys. 130: 064704,doi 10.1063/1.3075834.
- Pettersson L.G.M., C. W. Bauschlicher J., Halicioglu T., (1987), Small Al clusters. II. Structure and binding in Aln (n=2–6, 13). J. Chem. Phys. 87: 2205-2213,doi 10.1063/1.453147.
- Cox D.M., Trevor D.J., Whetten R.L., Rohlfing E.A., Kaldor A., (1986), Aluminum clusters: Magnetic properties. J. Chem. Phys. 84: 4651-4656,doi 10.1063/1.449991.
- Luo Z., W. C.A., (2014), Jr. Special and general superatoms. Acc. Chem. Res. 47: 2931−2940,doi 10.1021/ar5001583.
- Reber A.C., Khanna S.N., (2017), Superatoms: Electronic and geometric effects on reactivity. Acc. Chem. Res. 50: 255−263,doi 10.1021/acs.accounts.6b00464.
- Zhao J.-Y., Zhao F.-Q., Xu S.-Y., Ju X.-H., (2014), Theoretical study of the geometries and decomposition energies of CO2 on Al12X: Doping effect of Al12X. Journal of Molecular Graphics and Modelling. 45: 9–17,doi 10.1016/j.jmgm.2013.11.002.
- Lu Q.L., Chen L.L., Wan J.G., G H.W., (2010), First Principles Studies on the Interaction of O2 with X@Al12 (X = Al-, P+, C, Si) Clusters. Journal of Computational Chemistry. 31: 2804-2809,doi
- P.Jin, Chen Y., Zhang S.B., Chen Z., (2012), Interactions between Al12X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: implications for nanotoxicity. J Mol Model. 18: 559–568,doi 10.1007/s00894-011-1085-5.
- Zhang X.-L., Zhang L., Chen J.-H., Li C.-Y., Sun W.-M., (2020), On the Interaction between Superatom Al12Be and DNA Nucleobases/Base Pairs: Bonding Nature and Potential Applications in O2 Activation and CO Oxidation. ACS Omega 2020. 5: 15325−15334,doi 10.1021/acsomega.0c01375.
- Ghanbari H., Cousins B.G., Seifalian A.M., (2011), A nanocage for nanomedicine: Polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun. 32: 1032–1046,doi 10.1002/marc.201100126.
- Kazemi Z., Ghiasi R., Jamehbozorgi S., (2018), Analysis of the Interaction Between the C20 Cage and cis-PtCl2(NH3)2: A DFT Investigation of the Solvent Effect, Structures, Properties, and Topologies. Journal of Structural Chemistry. 59: 1044-1051,doi 10.1134/S0022476618050050.
- Ghasemi A.S., Ashrafi F., Babanejad S.A., Elyasi A., (2019), Study of the Physicochemical Properties of Anti-Cancer Drug Gemcitabine on the Surface of Al Doped C60 and C70 Fullerenes: A DFT Computation. J. Struc. Chemi. 60: 13-19,doi 10.1134/S0022476619010037.
- Mirali M., Jafariazar Z., Mirzaei M., (2021), Loading Tacrine Alzheimer's Drug at the Carbon Nanotube: DFT Approach. LAB-IN-SILICO. 2: 3-8,doi 10.22034/labinsilico21021003.
- Ghiasi R., Valizadeh A., (2023), Computational Investigation of Interaction of a Cycloplatinated Thiosemicarbazone as Antitumor and Antiparasitic Agents with B12N12 Nano-Cage. Results in Chemistry. 5: 100768,doi 10.1016/j.rechem.2023.100768.
- Ghiasi R., Emami R., Sofiyani M.V., (2021), Interaction between carboplatin with B12P12 and Al12P12 nano-clusters: A computational investigation Phosphorus, Sulfur, and Silicon and the Related Elements. 196: 751–759,doi 10.1080/10426507.2021.1920590.
- Ghiasi R., Sofiyani M.V., Emami R., (2021), Computational investigation of interaction of titanocene dichloride anti-cancer drug with carbon nanotube in presence of external electric field. Biointerface Research in Applied Chemistry. 11: 12454 - 12461,doi 10.33263/BRIAC114.1245412461.
- Shabani M., Ghiasi R., Zare K., Fazaeli R., (2020), Quantum chemical study of interaction between titanocene dichloride anticancer drug and Al12N12 nano-cluster Russian Journal of Inorganic Chemistry. 65: 1726–1734,doi 10.1134/S0036023620110169.
- Maurya A., Mishra A.N., Srivastavaa J., Mishra S., Pal M., Shukla R., Siddiqui Z., Kurban M., Prasad O., Sinha L., (2025), Drug delivery potential of γ-graphyne, 6,6,12-graphyne and γ-graphdiyne for 5-Fluorouracil: insights from DFT calculations. Composite Interfaces. 32: 1193-1213 doi 10.1080/09276440.2025.2460350.
- Kurban M., Muz İ., (2024), Investigating the potential use of (ZnO)60 nanoparticle as drug delivery system for chloroquine, hydroxychloroquine, favipiravir, and remdesivir. Materials Today Communications. 38: 108488,doi 10.1016/j.mtcomm.2024.108488.
- Bechohra L.L., Kurban M., Medigue N.E.H., Kellou-Taïri S., (2024), Drug delivery potential of carbon and boron nitride nanotubes: A DFT-D3 analysis of curcumin binding interactions. Diamond and Related Materials. 149: 111626,doi 10.1016/j.diamond.2024.111626.
- Shabavi Z.M., Shakerzadeh E., Yadav T., Tahmasebi E., Kaviani S., Anota E.C., (2024), A DFT study on the potential application of metal-encapsulated B12N12 nanocage for efficient removal of gemifloxacin in aqueous medium. Computational and Theoretical Chemistry. 1234: 114535,doi 10.1016/j.comptc.2024.114535.
- Khajavian M., Kaviani S., Piyanzina I., Tayurskii D.A., Nedopekin O.V., Haseli A., (2024), Amide-functionalized g-C3N4 nanosheet for the adsorption of arsenite (As3+): Process optimization, experimental, and density functional theory insight. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 690: 133803,doi 10.1016/j.colsurfa.2024.133803.
- Shahab S., Sheikhi M., Khancheuski M., Yahyaei H., Almodarresiyeh H.A., Kaviani S., (2022), DFT, molecular docking and ADME prediction of tenofovir drug as a promising therapeutic inhibitor of SARS-CoV-2 Mpro. Main Group Chemistry. 22: 115128,doi 10.3233/MGC-220046.
- Solgi A., Ghiasi R., Baniyaghoob S., (2023), PCM, ETS-NOCV, and CDA investigations of interactions of a Cycloplatinated Thiosemicarbazone as Antiparasitic and Antitumor Agents with C20 Nano-Cage. International Journal of Nano Dimension. 14: 219-226,doi 10.22034/ijnd.2023.1982969.2212.
- Ghiasi R., Rahimi M., (2021), Complex formation of Titanocene Dichloride Anticancer and Al12N12 Nano-cluster: A Quantum Chemical Investigation of Solvent, Temperature and Pressure Effects. Main Group Chemistry. 20: 19–32,doi 10.3233/MGC-210034.
- Ghiasi R., Nikbakht M., Pasdar H., (2024), Interactions of the Potential Antitumor Agent Vanadocene Dichloride with C20 and M+@C20 (M= Li, Na, K) nano-cages: A DFT investigation. Results in Chemistry. 9: 101659,doi 10.1016/j.rechem.2024.101659.
- Lu T., Chen F., (2011), Meaning and Functional Form of the Electron Localization Function. Acta Phys. -Chim. Sin. 27: 2786-2792,doi 10.3866/PKU.WHXB20112786.
- Neog B., Sarmah N., R.Kar, Bhattacharyya P.K., (2011), Effect of external electric field on aziridinium ion intermediate: A DFT study. Computational and Theoretical Chemistry. 976: 60–67,doi 10.1016/j.comptc.2011.08.002.
- Bhattacharyya P.K., (2015), Effect of external electric field on ground and singlet excited states of phenylalanine: A theoretical study. Computational and Theoretical Chemistry 1057: 43–53,doi 10.1016/j.comptc.2015.01.017.
- Zahedi E., Mozaffari M., Karimi F.-S., Nouri A., (2014), Density functional theory study of electric field effects on the isomerization of a photochromic molecular switch based on 1,2-dithienylethene. Can. J. Chem. . 92: 317–323 doi 10.1139/cjc-2013-0589.
- Kramer K.H., Bernstein R.B., (1964), Sudden approximation Applied to rotational excitation of molecules by atoms I. Low angle scattering. J. Chem. Phys. 40: 200–203,doi 10.1063/1.1724862.
- Brooks P.R., Jones M.E., (1966), Reactive scattering of K atoms from oriented CH3I molecules. J. Chem. Phys. . 45: 3449–3450,doi 10.1063/1.1728128.
- Shaik S., Mandal D., Ramanan R., (2016), Oriented electric fields as future smart reagents in chemistry. Nature Chemistry. 8: 1091-1098,doi 10.1038/nchem.2651
- Aragonès A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield N.J., Wallace G.G., Diez-Perez I., Coote M.L., (2016), Electrostatic catalysis of a Diels-Alder reaction. Nature 531: 88-91,doi 10.1038/nature16989.
- Ge J., Neofytou E., Cahill T.J., Beygui R.E., Zare R.N., (2012), Drug Release from ElectricField-Responsive Nanoparticles. ACS Nano. 6: 227–233,doi 10.1021/nn203430m.
- Kolosnjaj-Tabi J., Gibot L., Fourquaux I., Golzio M., Rols M.-P., (2019), Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects. Advanced Drug Delivery Reviews. 138: 56-67,doi 10.1016/j.addr.2018.10.017.
- Bandrauk A.D., Sedik E.S., Matta C.F., (2004), Effect of absolute laser phase on reaction paths in laser-induced chemical reactions. J. Chem. Phys. 121: 7764−7775,doi 10.1063/1.1793931.
- Arabi A.A., Matta C.F., (2011), Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Phys. Chem. Chem. Phys. 13: 13738−13748,doi 10.1039/C1CP20175A.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalman G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., T. Nakajima, Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., J. Normand, Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., J. Tomasi, Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.
- Rappoport D., Furche F., (2010), Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. . 133: 134105,doi 10.1063/1.3484283.
- Pritchard B.P., Altarawy D., Didier B.t., T. D. Gibson, Windus T.L., (2019), A New Basis Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 59: 4814-4820,doi 10.1021/acs.jcim.9b00725.
- Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T.L., (2007), Basis Set Exchange: A Community Database for Computational Sciences J. Chem. Inf. Model. 47: 1045-1052,doi 10.1021/ci600510j.
- Hay P.J., (1977), Gaussian basis sets for molecular calculations - representation of 3D orbitals in transition-metal atoms. J. Chem. Phys. 66: 4377-4384,doi 10.1063/1.433731.
- Krishnan R., Binkley J.S., Seeger R., Pople J.A., (1980), self consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72: 650-654,doi 10.1063/1.438955.
- McLean A.D., Chandler G.S., (1980), Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys. 72: 5639-5648,doi 10.1063/1.438980.
- Wachters A.J.H., (1970), Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52: 1033,doi 10.1063/1.1673095.
- Perdew J.P., (1986), Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 33: 8822,doi 10.1103/PhysRevB.33.8822.
- Perdew J.P., Wang Y., (1986), Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B. 33: 8800-8802,doi • 10.1103/physrevb.33.8800.
- Wang L.-F., Xie L., Fang H.-L., Li Y.-F., Zhang X.-B., Wang B., Zhang Y.-F., Huang X., (2014), On the structural and electronic properties of hexanuclear vanadium oxide clusters V6O-/0 (n = 12–15): Is V6O12 cluster planar or cage-like? Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 131: 446–454,doi 10.1016/j.saa.2014.04.094.
- Nguyen H.T., Nguyen M.T., (2015), Decomposition pathways of formamide in the presence of vanadium and titanium monoxides. Phys. Chem. Chem. Phys. 17: 16927-16936,doi 10.1039/c5cp01456e.
- Vyboishchikov S.F., Sauer J., (2000), Gas-Phase Vanadium Oxide Anions: Structure and Detachment Energies from Density Functional Calculations. J. Phys. Chem. A. 104: 10913-10922,doi 10.1021/jp001936x.
- Breneman C.M., Wiberg K.B., (1990), Determining atom-centered monopoles from molecular electrostatic potentials - the need for high sampling density in formamide conformational-analysis. J. Comp. Chem. 11: 361-373,doi 10.1002/jcc.540110311.
- S. Simon M.D., Dannenberg J.J., (1996), How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 105: 11024-11031,doi 10.1063/1.472902.
- Becke A.D., Edgecombe K.E., (1990), A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92: 5397–5403,doi 10.1063/1.458517.
- Savin A., Nesper R., Wengert S., Fssler T.F., (1997), ELF: the electron localization function,. Angew. Chem. Int. Ed. 36: 1808–1832,doi 10.1002/anie.199718081.
- Silvi B., Savin A., (1994), Classification of chemical bonds based on topological analysis of electron localization function. Nature. 371: 683–686,doi 10.1038/371683a0.
- Lu T., Chen Q., (2022), Independent gradient model based on Hirshfeld partition: A new ethod for visual study of interactions in chemical systems. J. Comput. Chem. 43: 539,doi 10.1002/jcc.26812.
- Lu T., Chen F., (2012), Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38: 314-323 doi 10.1016/j.jmgm.2012.07.004.
- Lu T., (2024), A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161: 082503,doi 10.1063/5.0216272.
10.57647/ijnd-2026-1702-04
