The capability of pure and metal-encapsulated all boron fullerenes (B40) as nanocarriers for β-Lapachone anticancer drug delivery: DFT study
- Department of Organic Chemistry, TeMS.C., Islamic Azad University, Tehran, Iran
- Department of Chemistry, TeMS.C., Islamic Azad University, Tehran, Iran
- Chemistry Department, Faculty of science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Received: 2025-05-22
Revised: 2025-06-22
Accepted: 2025-07-08
Published in Issue 2025-07-30
Copyright (c) -1 Mercedeh Hemmatian, Sharieh Hosseini, Hakimeh Ziyadi, Ehsan Shakerzadeh, Marjan Jebeli Javan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 124
Abstract
This work employs density functional theory (DFT) to explore the interactions between the anticancer agent β‑Lapachone (β‑Lap) and pristine B40 fullerenes as well as their potassium- and magnesium-encapsulated counterparts (K@B40 and Mg@B40). The results reveal significant interactions affecting the electronic structures of these molecules, with stable complexes formed and a notable reduction in energy gaps, indicating effective β-Lap adsorption. The β-Lap drug exhibits stronger binding to metal-encapsulated fullerenes than to pristine B40 in both aqueous and gas environments, with binding energies in water of approximately -5.2 kcal/mol for B40, -82.9 KCal/mol for Mg@B40, and -55.7 KCal/mol for K@B40. In aqueous media, the dipole moments of encapsulated complexes rise to nearly twice their gas-phase values. To complement the electronic structure insights, we employ Quantum Theory of Atoms in Molecules (QTAIM) to study the electron densities and their Laplacians, and Natural Bond Orbital (NBO) analysis to evaluate donor–acceptor interactions and charge redistribution within these complexes. Despite the strong adsorption energies, the interaction weakens in acidic conditions, facilitating drug release. These findings suggest that B40 and its metal-encapsulated derivatives are promising nanocarriers for β-Lap delivery, combining strong binding with controlled release potential in biological environments.
Keywords
- Adsorption,
- All boron fullerene,
- β-Lapachone,
- DFT calculation,
- Metal encapsulation
References
- Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Noreen S, et al. Potential of nanocarrier-based drug delivery systems for brain targeting: A current review of literature. International Journal of Nanomedicine. 2021:7517-33. https://doi.org/10.2147/IJN.S333657
- Chow EK-H, Ho D. Cancer nanomedicine: from drug delivery to imaging. Science translational medicine. 2013;5(216):216rv4-rv4.https://doi.org/10.1126/scitranslmed.3005872
- Ardekani ZM, Lorenzo-Leal AL, Bach H. Nanomedicine-mediated drug delivery for potential treatment of inflammatory bowel disease: a narrative review. Nanomedicine. 2024;19(2):163-79. https://doi.org/10.2217/nnm-2023-0267
- Bansal M, Kumar A, Malinee M, Sharma TK. Nanomedicine: Diagnosis, treatment, and potential prospects. Nanoscience in Medicine Vol 1. 2020:297-331. https://www.springer.com/series/11480
- Chhikara BS, Kumar R, Rathi B, Krishnamoorthy S, Kumar A. Prospects of Applied Nanomedicine: potential clinical and (bio) medical inter ventions via nanoscale research advances. Journal of Materials NanoScience. 2016;3(2):50-6. http://pubs.iscience.in/appnanomed
- Fang X, Cao J, Shen A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. Journal of Drug Delivery Science and Technology. 2020;57:101662.https://doi.org/10.1016/j.jddst.2020.101662
- Garbayo E, Pascual‐Gil S, Rodríguez‐Nogales C, Saludas L, Estella‐Hermoso de Mendoza A, Blanco‐Prieto MJ. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2020;12(5):e1637. https://doi.org/10.1002/wnan.1637
- Aal SA. DFT study of the therapeutic potential of borospherene and metalloborospherenes as a new drug-delivery system for the 5-fluorouracil anticancer drug. Journal of Molecular Liquids. 2022;360:119457 https://doi.org/10.1016/j.molliq.2022.119457
- Liu J, Li S, Wang J, Li N, Zhou J, Chen H. Application of nano drug delivery system (NDDS) in cancer therapy: A perspective. Recent patents on anti-cancer drug discovery. 2023;18(2):125-32. https://doi.org/10.2174/1574892817666220713150521
- Zhang L, Zhang J-C, Shi L-F, Cheng X, Chen J-H, Sun W-M. On the possibility of using the Ti@ Si16 superatom as a novel drug delivery carrier for different drugs: A DFT study. Journal of Molecular Graphics and Modelling. 2023;118:108378.https://doi.org/10.1016/j.jmgm.2022.108378
- Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomedicine & Pharmacotherapy. 2024;170:116059. https://doi.org/10.1016/j.biopha.2023.116059
- Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, et al. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioactive Materials. 2024;37:206-21. https://doi.org/10.1016/j.bioactmat.2024.03.014
- Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioactive Materials. 2024;35:150 66.https://doi.org/10.1016/j.bioactmat.2024.01.022
- Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic nano-drug delivery system: an emerging platform for promoting tumor treatment. International Journal of Nanomedicine. 2024:571-608.https://doi.org/10.2147/IJN.S442877
- Rai M, Gade A, Gaikwad S, Marcato PD, Durán N. Biomedical applications of nanobiosensors: the state-of-the-art. Journal of the Brazilian Chemical Society. 2012;23:14-24.https://doi.org/10.1590/S0103-50532012000100004
- Kong H, Yi K, Mintz RL, Wang B, Xu Y, Lao Y-H, et al. CRISPR/Cas detection with nanodevices: moving deeper into liquid biopsy. Chemical Communications. 2024.https://doi.org/10.1039/D3CC05375J
- Babu YS, Kumari N, Maruthi M. Nanodevices in neurological infections: an update. Recent Developments in Nanomaterial-based Sensing of Human Pathogens: Elsevier; 2024. p. 51-67. https://doi.org/10.1016/B978-0-443-18574-8.00017-0
- Azari B, Pourahmad A, Sadeghi B, Mokhtary M. Green synthesis of SiO2 from Equisetnm arvense plant for synthesis of SiO2/ZIF-8 MOF nanocomposite as photocatalyst. Journal of Coordination Chemistry. 2023;76(2):219-31.https://doi.org/10.1080/00958972.2023.2166408
- Li Y, Huang F, Stang PJ, Yin S. Supramolecular Coordination Complexes for Synergistic Cancer Therapy. Accounts of Chemical Research. 2024;57(8):1174-87.https://doi.org/10.1021/acs.accounts.4c00031
- Ostovan A, Milowska KZ, García-Cervera CJ. A twist for tunable electronic and thermal transport properties of nanodevices. Nanoscale. 2024;16(15):7504-14.https://doi.org/10.1039/D4NR00058G
- Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, et al., editors. Immunogenic cell stress and death in the treatment of cancer. Seminars in Cell & Developmental Biology; 2024: Elsevierhttps://doi.org/10.1016/j.semcdb.2023.10.007
- Victoir B, Croix C, Gouilleux F, Prié G. Targeted Therapeutic Strategies for the Treatment of Cancer. Cancers. 2024;16(2):461.https://doi.org/10.3390/cancers16020461
- Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resistance Updates. 2024:101041.https://doi.org/10.1016/j.drup.2023.101041
- Weth FR, Hoggarth GB, Weth AF, Paterson E, White MP, Tan ST, et al. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. British Journal of Cancer. 2024;130(5):703-15.https://doi.org/10.1038/s41416-023-02502-9
- Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, et al. Engineering and Targeting Neutrophils for Cancer Therapy. Advanced Materials. 2024;36(19):2310318.https://doi.org/10.1002/adma.202310318
- Zheng M, Zhang J, Deng C, Chen L, Zhang H, Xin J, et al. The collaborated assembly of hydrophobic curcumin and hydrophilic cyanine dye into nanocolloid for synergistic chemo-photothermal cancer therapy. Materials & Design. 2024;241:112900. https://doi.org/10.1016/j.matdes.2024.112900
- Afzal F, Ayub AR, Arshed SM, Taj A, Nabat KY, Hamid H, et al. A DFT-Based quantum analysis of Optimizing B3O3 as a Melphalan nanocarrier for cancer therapy. Computational and Theoretical Chemistry. 2024;1236:114582.https://doi.org/10.1016/j.comptc.2024.114582
- Daldossi C, Perilli D, Ferraro L, Di Valentin C. Functionalizing TiO2 Nanoparticles with Fluorescent Cyanine Dye for Photodynamic Therapy and Bioimaging: A DFT and TDDFT Study. The Journal of Physical Chemistry C. 2024;128(7):2978-89.https://doi.org/10.1021/acs.jpcc.3c08298
- Deb J, Kundu A, Garg N, Sarkar U, Chakraborty B. Copper decorated graphyne as a promising nanocarrier for cisplatin anti-cancer drug: A DFT study. Applied Surface Science. 2023;622:156885. https://doi.org/10.1016/j.apsusc.2023.156885
- Galini M, Salehi M, Kubicki M, Bayat M, Malekshah RE. Synthesis, structural characterization, DFT and molecular simulation study of new zinc-Schiff base complex and its application as a precursor for preparation of ZnO nanoparticle. Journal of Molecular Structure. 2020;1207:127715. https://doi.org/10.1016/j.molstruc.2020.127715
- Gunes BA, Kirlangic OF, Kilic M, Sunguroglu A, Ozgurtas T, Sezginer EK, et al. Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells. ACS omega. 2024;9(11):13342-58. https://doi.org/10.1021/acsomega.3c10324
- Guo C, Gao X, Wang Q, Song C, Yu H, Wang Q, et al. Density Functional Theory and Raman Spectroscopy Studies of Adsorption Sites of Au Nanoparticles with Alectinib. Langmuir. 2023;39(51):19048-55.https://doi.org/10.1021/acs.langmuir.3c03241
- Sadjadi MS, Sadeghi B, Zare K. Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes,[NSOX (NPCl2) 2]; X= F (1), X= Cl (2). Journal of Molecular Structure: THEOCHEM. 2007;817(1-3):27-33. https://doi.org/10.1016/j.theochem.2007.04.015
- Laban BB, Novaković M, Vasić-Anićijević D, Bondžić AM, Nikezić AV. A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024;309:123828.https://doi.org/10.1016/j.saa.2023.123828
- Sohrabnezhad S, Pourahmad A, Sadjadi M, Sadeghi B. Nickel cobalt sulfide nanoparticles grown on AlMCM-41 molecular sieve. Physica E: Low-dimensional Systems and Nanostructures. 2008;40(3):684-8.https://doi.org/10.1016/j.physe.2007.09.081
- Pan Y, Zhang Z, Cun J-E, Fan X, Pan Q, Gao W, et al. Oxidase-like manganese oxide nanoparticles: a mechanism of organic acids/aldehydes as electron acceptors and potential application in cancer therapy. Nanoscale. 2024;16(6):2860-7. https://doi.org/10.1039/D3NR05127G
- Kaur H, Kaur J, Kumar R. A review on all boron fullerene (B40): A promising material for sensing and device applications. Materials Today: Proceedings. 2022;48:1095-102. https://doi.org/10.1016/j.matpr.2021.07.465
- Camacho‐Cristóbal JJ, Rexach J, González‐Fontes A. Boron in plants: deficiency and toxicity. Journal of Integrative Plant Biology. 2008;50(10):1247-55. https://doi.org/10.1111/j.1744-7909.2008.00742.x
- Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H, Hu H-S, et al. Observation of an all-boron fullerene. Nature chemistry. 2014;6(8):727-31.
- Zhang L, Ye Y-L, Li X-H, Chen J-H, Sun W-M. On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea. Journal of Molecular Liquids. 2021;342:117533. https://doi.org/10.1016/j.molliq.2021.117533
- Suliman M, Kzar MH, Juma AS, Ali IA, Yasin Y, Sayyid NH, et al. B40 and SiB39 fullerenes enhance the physicochemical features of curcumin and effectively improve its anti-inflammatory and anti-cancer activities. Journal of Molecular Liquids. 2024;395:123816.
- ps://doi.org/10.1016/j.molliq.2023.123816
- Mussavi MS, Hosseini S. DFT study on the potential of M@ B40 (M= Mg and K) metalloborospherenes as nanocarrier for 6-Thioguanine anticancer drug. Journal of Molecular Liquids. 2024;395:123900.https://doi.org/10.1016/j.molliq.2023.123900
- Shakerzadeh E. Li@ B40 and Na@ B40 fullerenes serving as efficient carriers for anticancer nedaplatin drug: A quantum chemical study. Computational and Theoretical Chemistry. 2021;1202:113339.https://doi.org/10.1016/j.comptc.2021.113339
- Aal SA. Metalloborospherenes as a potential promising high drug-loading capacity for anticancer 5-fluorouracil drug: A DFT mechanistic approach. Computational and Theoretical Chemistry. 2023;1221:114046. https://doi.org/10.1016/j.comptc.2023.114046
- Kosar N, Koudjina S, Ayub K, Gilani MA, Imran M, Mahmood T. Mechanistic enhanced cell voltage based on halides doped metal oxide fullerenes for use in Li-ion batteries: Insights from DFT intuition. Diamond and Related Materials. 2024;142:110778. https://doi.org/10.1016/j.diamond.2023.110778
- Vohra R, Kaur H, Kaur J, Kumar R. Investigation of transport behavior in borospherene-based molecular wire for rectification applications. Journal of Materials Research. 2022:1-9. DOI:10.1557/s43578-021-00364
- Shakerzadeh E. Efficient carriers for anticancer 5-fluorouracil drug based on the bare and M− encapsulated (M= Na and Ca) B40 fullerenes; in silico investigation. Journal of Molecular Liquids. 2021;343:116970.https://doi.org/10.1016/j.molliq.2021.116970.
- Kaur H, Kaur J, Kumar R. Comparative study of symmetrical and asymmetrical B40 molecular junctions. Journal of Computational Electronics. 2022;21(3):599-607. https://doi.org/10.1007/s10825-022-01872-2
- Shakerzadeh E. Endohedral M@ B40 (M= Na and Ca) metalloborospherenes as innovative potential carriers for chemotherapy melphalan drug: A theoretical study. Applied Organometallic Chemistry. 2021;35(12):e6411. https://doi.org/10.1002/aoc.6411
- Fa W, Chen S, Pande S, Zeng XC. Stability of metal-encapsulating boron fullerene B40. The Journal of Physical Chemistry A. 2015;119(45):11208-14. https://doi.org/10.1021/acs.jpca.5b07173
- Bai H, Chen Q, Zhai HJ, Li SD. Endohedral and exohedral metalloborospherenes: M@ B40 (M= Ca, Sr) and M&B40 (M= Be, Mg). Angewandte Chemie International Edition. 2015;54(3):941-5. https://doi.org/10.1002/anie.201408738
- Pardee AB, Li Y, Li CJ. Cancer therapy with ß-lapachone. Current cancer drug targets. 2002;2(3):227-42. 52.ngentaconnect.com
- Chen Y, Wu R, Li X, Cao M, Yang M, Fu B, et al. β-Lapachone, an NQO1 bioactivatable drug, prevents lung tumorigenesis in mice. European Journal of Pharmacology. 2024;973:176511. https://doi.org/10.1016/j.ejphar.2024.176511
- de Moraes DC, Rollin-Pinheiro R, Pinto MdCFR, Domingos LTS, Barreto-Bergter E, Ferreira-Pereira A. Antifungal activity of β-lapachone against a fluconazole-resistant Candida auris strain. Brazilian Journal of Microbiology. 2024:1-9. https://doi.org/10.1007/s42770-024-01375-1
- Khosropour E, Hakimi L, Mirjalili A, Alavian A. Antimalarial Response, Traditional and Other Potential Uses of Tabebuia Genera. Antimalarial Medicinal Plants: CRC Press. p. 279-93.
- Nguyen HT, Pham-The H, Tuan AN, Thu HNT, Thi TAD, Le-Nhat-Thuy G, et al. Improved synthesis, molecular modeling and anti-inflammatory activity of new fluorinated dihydrofurano-naphthoquinone compounds. Bioorganic & Medicinal Chemistry Letters. 2024;104:129714. https://doi.org/10.1016/j.bmcl.2024.129714
- Qadir MI, Iqbal MS, Khan R. β-lapachone: A promising anticancer agent with a unique NQO1 specific apoptosis in pancreatic cancer. Current Cancer Drug Targets. 2022;22(7):537-40. https://doi.org/10.2174/1568009622666220427121127
- Lima KMM, Calandrini de Azevedo LF, Rissino JD, Vale VV, Costa EVS, Dolabela MF, et al. Anticancer Potential and Safety Profile of β-Lapachone In Vitro. Molecules. 2024;29(6):1395.
- Gholami A, Shakerzadeh E, Anota EC. Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron. 2023;232:116295. 59. https://doi.org/10.1016/j.poly.2023.116295
- Ning L, Jingling S, Jinhai S, Laishun L, Xiaoyu X, Meihong L, et al. Study on the THz spectrum of methamphetamine. Optics Express. 2005;13(18):6750-5. https://doi.org/10.1364/OPEX.13.006750
- Becke AD. Perspective: Fifty years of density-functional theory in chemical physics. The Journal of chemical physics. 2014;140(18). 61. https://doi.org/10.1063/1.4869598
- Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Accounts of chemical research. 2008;41(2):157-67. https://doi.org/10.1021/ar700111a
- Frisch M. gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT. 2009;201.
- Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, et al. Basis set exchange: a community database for computational sciences. Journal of chemical information and modeling. 2007;47(3):1045-52. https://doi.org/10.1021/ci600510j
- Ri M-H, Jang Y-M, Ri U-S, Yu C-J, Kim K-I, Kim S-U. Ab initio investigation of adsorption characteristics of bisphosphonates on hydroxyapatite (001) surface. Journal of materials science. 2018;53(6):4252-61. https://doi.org/10.1007/s10853-017-1880-1
- Foresman J, Frish E. Exploring chemistry. Gaussian Inc, Pittsburg, USA. 1996;21.
- Bader RF. Everyman's Derivation of the Theory of Atoms in Molecules. The Journal of Physical Chemistry A. 2007;111(32):7966-72. https://doi.org/10.1021/jp073213k
- Popelier P, Aicken F, O’Brien S. Atoms in molecules, vol. 188. Manchester: Prentice Hall Manchester; 2000.
- Becke A. The quantum theory of atoms in molecules: from solid state to DNA and drug design: John Wiley & Sons; 2007.
- Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews. 1988;88(6):899-926.https://doi.org/10.1021/cr00088a005
- Reed AE, Weinhold F. Natural bond orbital analysis of near‐Hartree–Fock water dimer. The Journal of chemical physics. 1983;78(6):4066 https://doi.org/10.1063/1.445134
- Reed AE, Weinhold F. Natural localized molecular orbitals. The Journal of chemical physics. 1985;83(4):1736-40. https://doi.org/10.1063/1.449360
- Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of chemical physics. 1985;83(2):735-46. https://doi.org/10.1063/1.449486
- Foster JP, Weinhold F. Natural hybrid orbitals. Journal of the American Chemical Society. 1980;102(24):7211-8. https://doi.org/10.1021/ja00544a007
- Chocholoušová J, Špirko V, Hobza P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯ O and improper blue-shifted C–H⋯ O hydrogen bonds. Physical Chemistry Chemical Physics. 2004;6(1):37-41. https://doi.org/10.1039/B314148A
- Koch U, Popelier PL. Characterization of CHO hydrogen bonds on the basis of the charge density. The Journal of Physical Chemistry. 1995;99(24):9747-54. https://doi.org/10.1021/j100024a016
- Bader RF. A bond path: a universal indicator of bonded interactions. The Journal of Physical Chemistry A. 1998;102(37):7314-23. https://doi.org/10.1021/jp981794v
- Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, et al. GEN NBO 5.0; Board of Regents of the University of Wisconsin System on behalf of the Theoretical Chemistry Institute: Madison, WI, 2001. Google Scholar There is no corresponding record for this reference. https://doi.org/10.1021/jp2080226
- Biegler‐König F, Schönbohm J. Update of the AIM2000‐program for atoms in molecules. Journal of computational chemistry. 2002;23(15):1489-94. https://doi.org/10.1002/jcc.10085
- Li SS. Semiconductor physical electronics: Springer Science & Business Media; 2012.
- Mennucci B, Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. The Journal of chemical physics. 1997;106(12):5151-8. https://doi.org/10.2147/IJN.S333657
10.57647/j.ijnd.2026.1701.06