10.57647/j.ijnd.2026.1701.06

The capability of pure and metal-encapsulated all boron fullerenes (B40) as nanocarriers for β-Lapachone anticancer drug delivery: DFT study

  1. Department of Organic Chemistry, TeMS.C., Islamic Azad University, Tehran, Iran
  2. Department of Chemistry, TeMS.C., Islamic Azad University, Tehran, Iran
  3. Chemistry Department, Faculty of science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
The capability of pure and metal-encapsulated all boron fullerenes (B40) as nanocarriers for β-Lapachone anticancer drug delivery: DFT study

Received: 2025-05-22

Revised: 2025-06-22

Accepted: 2025-07-08

Published in Issue 2025-07-30

How to Cite

Hemmatian, M., Hosseini, S., Ziyadi, H., Shakerzadeh, E., & Jebeli Javan, M. (2025). The capability of pure and metal-encapsulated all boron fullerenes (B40) as nanocarriers for β-Lapachone anticancer drug delivery: DFT study. International Journal of Nano Dimension, 17(2 (April 2026). https://doi.org/10.57647/j.ijnd.2026.1701.06

PDF views: 124

Abstract

This work employs density functional theory (DFT) to explore the interactions between the anticancer agent β‑Lapachone (β‑Lap) and pristine B40 fullerenes as well as their potassium- and magnesium-encapsulated counterparts (K@B40 and Mg@B40). The results reveal significant interactions affecting the electronic structures of these molecules, with stable complexes formed and a notable reduction in energy gaps, indicating effective β-Lap adsorption. The β-Lap drug exhibits stronger binding to metal-encapsulated fullerenes than to pristine B40 in both aqueous and gas environments, with binding energies in water of approximately -5.2 kcal/mol for B40, -82.9 KCal/mol for Mg@B40, and -55.7 KCal/mol for K@B40. In aqueous media, the dipole moments of encapsulated complexes rise to nearly twice their gas-phase values. To complement the electronic structure insights, we employ Quantum Theory of Atoms in Molecules (QTAIM) to study the electron densities and their Laplacians, and Natural Bond Orbital (NBO) analysis to evaluate donor–acceptor interactions and charge redistribution within these complexes. Despite the strong adsorption energies, the interaction weakens in acidic conditions, facilitating drug release. These findings suggest that B40 and its metal-encapsulated derivatives are promising nanocarriers for β-Lap delivery, combining strong binding with controlled release potential in biological environments.

Keywords

  • Adsorption,
  • All boron fullerene,
  • β-Lapachone,
  • DFT calculation,
  • Metal encapsulation

References

  1. Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Noreen S, et al. Potential of nanocarrier-based drug delivery systems for brain targeting: A current review of literature. International Journal of Nanomedicine. 2021:7517-33. https://doi.org/10.2147/IJN.S333657
  2. Chow EK-H, Ho D. Cancer nanomedicine: from drug delivery to imaging. Science translational medicine. 2013;5(216):216rv4-rv4.https://doi.org/10.1126/scitranslmed.3005872
  3. Ardekani ZM, Lorenzo-Leal AL, Bach H. Nanomedicine-mediated drug delivery for potential treatment of inflammatory bowel disease: a narrative review. Nanomedicine. 2024;19(2):163-79. https://doi.org/10.2217/nnm-2023-0267
  4. Bansal M, Kumar A, Malinee M, Sharma TK. Nanomedicine: Diagnosis, treatment, and potential prospects. Nanoscience in Medicine Vol 1. 2020:297-331. https://www.springer.com/series/11480
  5. Chhikara BS, Kumar R, Rathi B, Krishnamoorthy S, Kumar A. Prospects of Applied Nanomedicine: potential clinical and (bio) medical inter ventions via nanoscale research advances. Journal of Materials NanoScience. 2016;3(2):50-6. http://pubs.iscience.in/appnanomed
  6. Fang X, Cao J, Shen A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. Journal of Drug Delivery Science and Technology. 2020;57:101662.https://doi.org/10.1016/j.jddst.2020.101662
  7. Garbayo E, Pascual‐Gil S, Rodríguez‐Nogales C, Saludas L, Estella‐Hermoso de Mendoza A, Blanco‐Prieto MJ. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2020;12(5):e1637. https://doi.org/10.1002/wnan.1637
  8. Aal SA. DFT study of the therapeutic potential of borospherene and metalloborospherenes as a new drug-delivery system for the 5-fluorouracil anticancer drug. Journal of Molecular Liquids. 2022;360:119457 https://doi.org/10.1016/j.molliq.2022.119457
  9. Liu J, Li S, Wang J, Li N, Zhou J, Chen H. Application of nano drug delivery system (NDDS) in cancer therapy: A perspective. Recent patents on anti-cancer drug discovery. 2023;18(2):125-32. https://doi.org/10.2174/1574892817666220713150521
  10. Zhang L, Zhang J-C, Shi L-F, Cheng X, Chen J-H, Sun W-M. On the possibility of using the Ti@ Si16 superatom as a novel drug delivery carrier for different drugs: A DFT study. Journal of Molecular Graphics and Modelling. 2023;118:108378.https://doi.org/10.1016/j.jmgm.2022.108378
  11. Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomedicine & Pharmacotherapy. 2024;170:116059. https://doi.org/10.1016/j.biopha.2023.116059
  12. Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, et al. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioactive Materials. 2024;37:206-21. https://doi.org/10.1016/j.bioactmat.2024.03.014
  13. Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioactive Materials. 2024;35:150 66.https://doi.org/10.1016/j.bioactmat.2024.01.022
  14. Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic nano-drug delivery system: an emerging platform for promoting tumor treatment. International Journal of Nanomedicine. 2024:571-608.https://doi.org/10.2147/IJN.S442877
  15. Rai M, Gade A, Gaikwad S, Marcato PD, Durán N. Biomedical applications of nanobiosensors: the state-of-the-art. Journal of the Brazilian Chemical Society. 2012;23:14-24.https://doi.org/10.1590/S0103-50532012000100004
  16. Kong H, Yi K, Mintz RL, Wang B, Xu Y, Lao Y-H, et al. CRISPR/Cas detection with nanodevices: moving deeper into liquid biopsy. Chemical Communications. 2024.https://doi.org/10.1039/D3CC05375J
  17. Babu YS, Kumari N, Maruthi M. Nanodevices in neurological infections: an update. Recent Developments in Nanomaterial-based Sensing of Human Pathogens: Elsevier; 2024. p. 51-67. https://doi.org/10.1016/B978-0-443-18574-8.00017-0
  18. Azari B, Pourahmad A, Sadeghi B, Mokhtary M. Green synthesis of SiO2 from Equisetnm arvense plant for synthesis of SiO2/ZIF-8 MOF nanocomposite as photocatalyst. Journal of Coordination Chemistry. 2023;76(2):219-31.https://doi.org/10.1080/00958972.2023.2166408
  19. Li Y, Huang F, Stang PJ, Yin S. Supramolecular Coordination Complexes for Synergistic Cancer Therapy. Accounts of Chemical Research. 2024;57(8):1174-87.https://doi.org/10.1021/acs.accounts.4c00031
  20. Ostovan A, Milowska KZ, García-Cervera CJ. A twist for tunable electronic and thermal transport properties of nanodevices. Nanoscale. 2024;16(15):7504-14.https://doi.org/10.1039/D4NR00058G
  21. Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, et al., editors. Immunogenic cell stress and death in the treatment of cancer. Seminars in Cell & Developmental Biology; 2024: Elsevierhttps://doi.org/10.1016/j.semcdb.2023.10.007
  22. Victoir B, Croix C, Gouilleux F, Prié G. Targeted Therapeutic Strategies for the Treatment of Cancer. Cancers. 2024;16(2):461.https://doi.org/10.3390/cancers16020461
  23. Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resistance Updates. 2024:101041.https://doi.org/10.1016/j.drup.2023.101041
  24. Weth FR, Hoggarth GB, Weth AF, Paterson E, White MP, Tan ST, et al. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. British Journal of Cancer. 2024;130(5):703-15.https://doi.org/10.1038/s41416-023-02502-9
  25. Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, et al. Engineering and Targeting Neutrophils for Cancer Therapy. Advanced Materials. 2024;36(19):2310318.https://doi.org/10.1002/adma.202310318
  26. Zheng M, Zhang J, Deng C, Chen L, Zhang H, Xin J, et al. The collaborated assembly of hydrophobic curcumin and hydrophilic cyanine dye into nanocolloid for synergistic chemo-photothermal cancer therapy. Materials & Design. 2024;241:112900. https://doi.org/10.1016/j.matdes.2024.112900
  27. Afzal F, Ayub AR, Arshed SM, Taj A, Nabat KY, Hamid H, et al. A DFT-Based quantum analysis of Optimizing B3O3 as a Melphalan nanocarrier for cancer therapy. Computational and Theoretical Chemistry. 2024;1236:114582.https://doi.org/10.1016/j.comptc.2024.114582
  28. Daldossi C, Perilli D, Ferraro L, Di Valentin C. Functionalizing TiO2 Nanoparticles with Fluorescent Cyanine Dye for Photodynamic Therapy and Bioimaging: A DFT and TDDFT Study. The Journal of Physical Chemistry C. 2024;128(7):2978-89.https://doi.org/10.1021/acs.jpcc.3c08298
  29. Deb J, Kundu A, Garg N, Sarkar U, Chakraborty B. Copper decorated graphyne as a promising nanocarrier for cisplatin anti-cancer drug: A DFT study. Applied Surface Science. 2023;622:156885. https://doi.org/10.1016/j.apsusc.2023.156885
  30. Galini M, Salehi M, Kubicki M, Bayat M, Malekshah RE. Synthesis, structural characterization, DFT and molecular simulation study of new zinc-Schiff base complex and its application as a precursor for preparation of ZnO nanoparticle. Journal of Molecular Structure. 2020;1207:127715. https://doi.org/10.1016/j.molstruc.2020.127715
  31. Gunes BA, Kirlangic OF, Kilic M, Sunguroglu A, Ozgurtas T, Sezginer EK, et al. Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells. ACS omega. 2024;9(11):13342-58. https://doi.org/10.1021/acsomega.3c10324
  32. Guo C, Gao X, Wang Q, Song C, Yu H, Wang Q, et al. Density Functional Theory and Raman Spectroscopy Studies of Adsorption Sites of Au Nanoparticles with Alectinib. Langmuir. 2023;39(51):19048-55.https://doi.org/10.1021/acs.langmuir.3c03241
  33. Sadjadi MS, Sadeghi B, Zare K. Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes,[NSOX (NPCl2) 2]; X= F (1), X= Cl (2). Journal of Molecular Structure: THEOCHEM. 2007;817(1-3):27-33. https://doi.org/10.1016/j.theochem.2007.04.015
  34. Laban BB, Novaković M, Vasić-Anićijević D, Bondžić AM, Nikezić AV. A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024;309:123828.https://doi.org/10.1016/j.saa.2023.123828
  35. Sohrabnezhad S, Pourahmad A, Sadjadi M, Sadeghi B. Nickel cobalt sulfide nanoparticles grown on AlMCM-41 molecular sieve. Physica E: Low-dimensional Systems and Nanostructures. 2008;40(3):684-8.https://doi.org/10.1016/j.physe.2007.09.081
  36. Pan Y, Zhang Z, Cun J-E, Fan X, Pan Q, Gao W, et al. Oxidase-like manganese oxide nanoparticles: a mechanism of organic acids/aldehydes as electron acceptors and potential application in cancer therapy. Nanoscale. 2024;16(6):2860-7. https://doi.org/10.1039/D3NR05127G
  37. Kaur H, Kaur J, Kumar R. A review on all boron fullerene (B40): A promising material for sensing and device applications. Materials Today: Proceedings. 2022;48:1095-102. https://doi.org/10.1016/j.matpr.2021.07.465
  38. Camacho‐Cristóbal JJ, Rexach J, González‐Fontes A. Boron in plants: deficiency and toxicity. Journal of Integrative Plant Biology. 2008;50(10):1247-55. https://doi.org/10.1111/j.1744-7909.2008.00742.x
  39. Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H, Hu H-S, et al. Observation of an all-boron fullerene. Nature chemistry. 2014;6(8):727-31.
  40. Zhang L, Ye Y-L, Li X-H, Chen J-H, Sun W-M. On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea. Journal of Molecular Liquids. 2021;342:117533. https://doi.org/10.1016/j.molliq.2021.117533
  41. Suliman M, Kzar MH, Juma AS, Ali IA, Yasin Y, Sayyid NH, et al. B40 and SiB39 fullerenes enhance the physicochemical features of curcumin and effectively improve its anti-inflammatory and anti-cancer activities. Journal of Molecular Liquids. 2024;395:123816.
  42. ps://doi.org/10.1016/j.molliq.2023.123816
  43. Mussavi MS, Hosseini S. DFT study on the potential of M@ B40 (M= Mg and K) metalloborospherenes as nanocarrier for 6-Thioguanine anticancer drug. Journal of Molecular Liquids. 2024;395:123900.https://doi.org/10.1016/j.molliq.2023.123900
  44. Shakerzadeh E. Li@ B40 and Na@ B40 fullerenes serving as efficient carriers for anticancer nedaplatin drug: A quantum chemical study. Computational and Theoretical Chemistry. 2021;1202:113339.https://doi.org/10.1016/j.comptc.2021.113339
  45. Aal SA. Metalloborospherenes as a potential promising high drug-loading capacity for anticancer 5-fluorouracil drug: A DFT mechanistic approach. Computational and Theoretical Chemistry. 2023;1221:114046. https://doi.org/10.1016/j.comptc.2023.114046
  46. Kosar N, Koudjina S, Ayub K, Gilani MA, Imran M, Mahmood T. Mechanistic enhanced cell voltage based on halides doped metal oxide fullerenes for use in Li-ion batteries: Insights from DFT intuition. Diamond and Related Materials. 2024;142:110778. https://doi.org/10.1016/j.diamond.2023.110778
  47. Vohra R, Kaur H, Kaur J, Kumar R. Investigation of transport behavior in borospherene-based molecular wire for rectification applications. Journal of Materials Research. 2022:1-9. DOI:10.1557/s43578-021-00364
  48. Shakerzadeh E. Efficient carriers for anticancer 5-fluorouracil drug based on the bare and M− encapsulated (M= Na and Ca) B40 fullerenes; in silico investigation. Journal of Molecular Liquids. 2021;343:116970.https://doi.org/10.1016/j.molliq.2021.116970.
  49. Kaur H, Kaur J, Kumar R. Comparative study of symmetrical and asymmetrical B40 molecular junctions. Journal of Computational Electronics. 2022;21(3):599-607. https://doi.org/10.1007/s10825-022-01872-2
  50. Shakerzadeh E. Endohedral M@ B40 (M= Na and Ca) metalloborospherenes as innovative potential carriers for chemotherapy melphalan drug: A theoretical study. Applied Organometallic Chemistry. 2021;35(12):e6411. https://doi.org/10.1002/aoc.6411
  51. Fa W, Chen S, Pande S, Zeng XC. Stability of metal-encapsulating boron fullerene B40. The Journal of Physical Chemistry A. 2015;119(45):11208-14. https://doi.org/10.1021/acs.jpca.5b07173
  52. Bai H, Chen Q, Zhai HJ, Li SD. Endohedral and exohedral metalloborospherenes: M@ B40 (M= Ca, Sr) and M&B40 (M= Be, Mg). Angewandte Chemie International Edition. 2015;54(3):941-5. https://doi.org/10.1002/anie.201408738
  53. Pardee AB, Li Y, Li CJ. Cancer therapy with ß-lapachone. Current cancer drug targets. 2002;2(3):227-42. 52.ngentaconnect.com
  54. Chen Y, Wu R, Li X, Cao M, Yang M, Fu B, et al. β-Lapachone, an NQO1 bioactivatable drug, prevents lung tumorigenesis in mice. European Journal of Pharmacology. 2024;973:176511. https://doi.org/10.1016/j.ejphar.2024.176511
  55. de Moraes DC, Rollin-Pinheiro R, Pinto MdCFR, Domingos LTS, Barreto-Bergter E, Ferreira-Pereira A. Antifungal activity of β-lapachone against a fluconazole-resistant Candida auris strain. Brazilian Journal of Microbiology. 2024:1-9. https://doi.org/10.1007/s42770-024-01375-1
  56. Khosropour E, Hakimi L, Mirjalili A, Alavian A. Antimalarial Response, Traditional and Other Potential Uses of Tabebuia Genera. Antimalarial Medicinal Plants: CRC Press. p. 279-93.
  57. Nguyen HT, Pham-The H, Tuan AN, Thu HNT, Thi TAD, Le-Nhat-Thuy G, et al. Improved synthesis, molecular modeling and anti-inflammatory activity of new fluorinated dihydrofurano-naphthoquinone compounds. Bioorganic & Medicinal Chemistry Letters. 2024;104:129714. https://doi.org/10.1016/j.bmcl.2024.129714
  58. Qadir MI, Iqbal MS, Khan R. β-lapachone: A promising anticancer agent with a unique NQO1 specific apoptosis in pancreatic cancer. Current Cancer Drug Targets. 2022;22(7):537-40. https://doi.org/10.2174/1568009622666220427121127
  59. Lima KMM, Calandrini de Azevedo LF, Rissino JD, Vale VV, Costa EVS, Dolabela MF, et al. Anticancer Potential and Safety Profile of β-Lapachone In Vitro. Molecules. 2024;29(6):1395.
  60. Gholami A, Shakerzadeh E, Anota EC. Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron. 2023;232:116295. 59. https://doi.org/10.1016/j.poly.2023.116295
  61. Ning L, Jingling S, Jinhai S, Laishun L, Xiaoyu X, Meihong L, et al. Study on the THz spectrum of methamphetamine. Optics Express. 2005;13(18):6750-5. https://doi.org/10.1364/OPEX.13.006750
  62. Becke AD. Perspective: Fifty years of density-functional theory in chemical physics. The Journal of chemical physics. 2014;140(18). 61. https://doi.org/10.1063/1.4869598
  63. Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Accounts of chemical research. 2008;41(2):157-67. https://doi.org/10.1021/ar700111a
  64. Frisch M. gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT. 2009;201.
  65. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, et al. Basis set exchange: a community database for computational sciences. Journal of chemical information and modeling. 2007;47(3):1045-52. https://doi.org/10.1021/ci600510j
  66. Ri M-H, Jang Y-M, Ri U-S, Yu C-J, Kim K-I, Kim S-U. Ab initio investigation of adsorption characteristics of bisphosphonates on hydroxyapatite (001) surface. Journal of materials science. 2018;53(6):4252-61. https://doi.org/10.1007/s10853-017-1880-1
  67. Foresman J, Frish E. Exploring chemistry. Gaussian Inc, Pittsburg, USA. 1996;21.
  68. Bader RF. Everyman's Derivation of the Theory of Atoms in Molecules. The Journal of Physical Chemistry A. 2007;111(32):7966-72. https://doi.org/10.1021/jp073213k
  69. Popelier P, Aicken F, O’Brien S. Atoms in molecules, vol. 188. Manchester: Prentice Hall Manchester; 2000.
  70. Becke A. The quantum theory of atoms in molecules: from solid state to DNA and drug design: John Wiley & Sons; 2007.
  71. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews. 1988;88(6):899-926.https://doi.org/10.1021/cr00088a005
  72. Reed AE, Weinhold F. Natural bond orbital analysis of near‐Hartree–Fock water dimer. The Journal of chemical physics. 1983;78(6):4066 https://doi.org/10.1063/1.445134
  73. Reed AE, Weinhold F. Natural localized molecular orbitals. The Journal of chemical physics. 1985;83(4):1736-40. https://doi.org/10.1063/1.449360
  74. Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of chemical physics. 1985;83(2):735-46. https://doi.org/10.1063/1.449486
  75. Foster JP, Weinhold F. Natural hybrid orbitals. Journal of the American Chemical Society. 1980;102(24):7211-8. https://doi.org/10.1021/ja00544a007
  76. Chocholoušová J, Špirko V, Hobza P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯ O and improper blue-shifted C–H⋯ O hydrogen bonds. Physical Chemistry Chemical Physics. 2004;6(1):37-41. https://doi.org/10.1039/B314148A
  77. Koch U, Popelier PL. Characterization of CHO hydrogen bonds on the basis of the charge density. The Journal of Physical Chemistry. 1995;99(24):9747-54. https://doi.org/10.1021/j100024a016
  78. Bader RF. A bond path: a universal indicator of bonded interactions. The Journal of Physical Chemistry A. 1998;102(37):7314-23. https://doi.org/10.1021/jp981794v
  79. Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, et al. GEN NBO 5.0; Board of Regents of the University of Wisconsin System on behalf of the Theoretical Chemistry Institute: Madison, WI, 2001. Google Scholar There is no corresponding record for this reference. https://doi.org/10.1021/jp2080226
  80. Biegler‐König F, Schönbohm J. Update of the AIM2000‐program for atoms in molecules. Journal of computational chemistry. 2002;23(15):1489-94. https://doi.org/10.1002/jcc.10085
  81. Li SS. Semiconductor physical electronics: Springer Science & Business Media; 2012.
  82. Mennucci B, Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. The Journal of chemical physics. 1997;106(12):5151-8. https://doi.org/10.2147/IJN.S333657