DFT study of HCl the clusters under nano confinement of Carbon Fullerenes
- Advanced Materials Energy Research (AMER), Physics Department, University of Mumbai, Kalina Santacruz, Mumbai, Maharashtra, India
Received: 2024-11-16
Revised: 2024-07-22
Accepted: 2024-07-23
Published in Issue 2025-07-30
Copyright (c) -1 Aruna Thaker, Arwa Makki, Dina Hajar, Pradip Sarawade (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 66
Abstract
This report reveals the geometry, vibrational properties, and molecular orbitals with HOMO-LUMO energies of HCl clusters (HCl)n=1-2 under the confinement of carbon fullerenes CN=42-52 at B3LYP level with basis set 6-311++g(d,p). Due to the effect of the H-bond network, the variation in bond length is observed relative to the variation of diameter of carbon fullerenes from C42 to C52. Unexpectedly, the high intermolecular stretching mode (3403.96 cm-1) is observed for a shorter bond length (H-Cl =1.234 A0) under C46. The confined HCl under C52 results in high intensity (57.75 units) for stretching mode 2859.36 cm-1 with high polarity prediction but on the other hand confined HCl dimer under C44 shows the highest stretching mode in the frequency range 3000 cm-1 with compressed bond length (H-Cl=1.254 A0) which acts as an unsaturated system. For HCl, under the confinement of C52, the bond length increases up to 1.292 A0 which is quite greater than the experimental value of free HCl (1.275 A0). Exclusively the band gap energies of both the clusters (HCl)n=1-2 are also considered to study H-bond connectivity with carbon atoms by using their (HOMO-LUMO).
Keywords
- Carbon fullerenes,
- DFT,
- Hydrogen-bond network,
- Molecular Dynamics,
- Molecular Orbitals
References
- T. Pradeep and C.N.R. Rao, The Journal of Chemical Physics 95, (1991) 7389-7391
- Kroto, H.W., Heath, J.R., O’Brein, S.C., Curl, R.F. and Smalley, R.E.,Nature, 1985, 318, 162.
- Kroto, H.W., Allaf, A.W. and Balm,. S.P., Chem. Rev., 1991, 91, 1231
- Xin Lu, Kwantlen Polytechnique University, IR Spectrum and Characteristic Absorption Bands, https://chem.libretexts.org/@go/page/359595
- W. Andreoni, Ann. Rev. Phys. Chem., 1998, 49, 405
- Majumdar, D., Chatterjee, A., Feizi-Dehnayebi, M., Kiran, N. S., Tuzun, B., & Mishra, D. (2024). 8-Aminoquinoline derived two Schiff base platforms: Synthesis, characterization, DFT insights, corrosion inhibitor, molecular docking, and pH-dependent antibacterial study. Heliyon, 10(15).
- Majumdar, D., Philip, J. E., Gassoumi, B., Ayachi, S., Abdelaziz, B., Tüzün, B., & Roy, S. (2024). Supramolecular clumps of μ2-1, 3-acetate bridges of Cd (II)-Salen complex: Synthesis, spectroscopic characterization, crystal structure, DFT quantization's, and antifungal photodynamic therapy. Heliyon, 10(9).
- Majumdar, D., Frontera, A., Roy, S., & Sutradhar, D. (2023). Experimental and theoretical survey of Intramolecular Spodium Bonds/σ/π-Holes and noncovalent interactions in Trinuclear Zn (II)-Salen type complex with OCN–Ions: a holistic view in Crystal Engineering. ACS omega, 9(1), 1786-1797.
- Majumdar, D., Roy, S., & Frontera, A. (2022). The importance of tetrel bonding interactions with carbon in two arrestive iso-structural Cd (ii)–Salen coordination complexes: a comprehensive DFT overview in crystal engineering. RSC advances, 12(55), 35860-35872.
- Majumdar, D., Dubey, A., Tufail, A., Sutradhar, D., & Roy, S. (2023). Synthesis, spectroscopic investigation, molecular docking, ADME/T toxicity predictions, and DFT study of two trendy ortho vanillin-based scaffolds. Heliyon, 9(6).
- Alireza Zeinalinezhad and Riadh Sahnoun, ACS Omega 2020, 5, 22, 12853–12864.
- Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253– 4264
- R. C. Guedes, P. C. do Couto, and B. J. Costa Cabrala, The Journal of Chemical Physics 118, 1272 (2003); doi: 10.1063/1.1528952
- Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979
- J. Tirado-Rives and W. L. Jorgensen, “Performance of B3LYP density functional methods for a large set of organic molecules,” J. Chem. Theory and Comput., 4 (2008) 297-306.
- A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- F. A. Hamprecht, A. Cohen, D. J. Tozer, and N. C. Handy, “Development and assessment of new exchange-correlation functionals,” J. Chem. Phys., 109 (1998) 6264-71.
- M. J. S. Dewar, E. G. Zoebisch, and E. F. Healy, “AM1: A New General Purpose Quantum Mechanical Molecular Model,” J. Am. Chem. Soc., 107 (1985) 3902-09.
- Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09.
- Martin J. Packert and David C. Clary J. Phys. Chem. 1995,99, 14323-14333
- L. Andrews, V. E. Bondybev, and J. H. English, J. Chem. Phys. 81, 3452 (1984).
- L. Andrews and R. B. Bohn, J. Chem. Phys. 90, 5205 (1989).
- Z. Latajka and S. Scheiner, Chem. Phys. 216, 37 (1997)
- Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci. 2008;50:2981-92.
- Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982;218:747-54.
- Sinha L, Prasad O, Narayan V, Shukla SR. Raman, FT-IR spectroscopic analysis and first-order hyperpolarisability of 3-benzoyl-5-chlorouracil by first principles. J Mol simul. 2011;37:153-63.
- Lewis DFV, Loannides C, Parke DV. Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure-activity relationships. Xenobiotica. 1994;24:401-8.
- Kosar B, Albayrak C. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl]phenol. Spectrochim Acta. 2011;78:160-7.
10.57647/j.ijnd.2026.1701.04
