10.57647/j.ijnd.2025.1604.29

Synthesis, characterization of Graphene Oxide/ZnO/Al2O3 nanocomposite Aerogel and its electrochemical application

  1. Department of Chemistry, College of Science , Al-Mustansiriyah University, Iraq
  2. Department of Chemistry, College of Science, Al-Mustansiriyah University, Iraq
Synthesis, characterization of Graphene Oxide/ZnO/Al2O3 nanocomposite Aerogel and its electrochemical application

Received: 2025-01-12

Revised: 2025-04-10

Accepted: 2025-05-01

Published in Issue 2025-05-17

How to Cite

Kamil, B. A.-F., & Hadi Hussain, D. (2025). Synthesis, characterization of Graphene Oxide/ZnO/Al2O3 nanocomposite Aerogel and its electrochemical application. International Journal of Nano Dimension, 16(4 (October 2025). https://doi.org/10.57647/j.ijnd.2025.1604.29

PDF views: 165

Abstract

In this study, nanocomposite GO/ZnO/Al2O3 aerogels with different GO ratios (10, 30, and 50 %) were effectively prepared using a hydrothermal method and a modified Hummers method to prepare GOES. ZnO and Al2O3 NPs were synthesized from curcumin extract using a green synthesis method. Raman, XRD, EDX, FESEM and UV-Vis. Spectra were used to characterize the synthesized nanomaterials. The bandgap energies of GO, ZnO, Al2O3, and their nanocomposites were calculated from their UV spectra. The interaction between the components of the nanocomposite graphene oxide, zinc oxide and aluminum oxide give the nanocomposite photochemical importance owing to the large surface area of ​​the components, especially graphene oxide and zinc oxide, and the high electrical and thermal conductivities of the molecule. Improved electrochemical properties were achieved by fabricating dye-sensitized solar cells, composed of nano curcumin and methylene blue as sensitizers, GO/ZnO/Al2O3 nanocomposite aerogel as a photoanode to obtain a highly efficient cell at the lowest cost and copper as the counter electrode. The DSSC achieves the best performance at 0.36% and 50% GO content when methylene blue is used as a sensitizer to accelerate the excitation of electrons and generate current and voltage. The primary objective of this study is to develop dye-sensitized solar cells with maximum efficiency at minimum cost.

Keywords

  • Electrochemical Application and Dye-Sensitized Solar Cell (DSSC),
  • FESEM,
  • Graphene Oxide,
  • Nanocomposite Aerogel,
  • Nanocurcumin

References

  1. Dequan W., Xiang L., Shenghua L., Leipeng L., Lei W., Zexiong L. and Yonggang H., (2022), Fabrication, Structure, Performance, and Application of Graphene-Based Composite Aerogel. Mat., 15, 299. https://doi.org/10.3390%2Fma15010299
  2. Awatef A., Muhyaddin R., Yacine K., Hatem F. A. S., Mohsen S. and Goshtasp C., (2021), Simulation of melting and solidification of graphene nanoparticles-PCM inside a dual tube heat exchanger with extended surface. J. E. Stor. 44. 103265. https://doi.org/10.1016/j.est.2021.103265
  3. Tharmakularasa R., Fatemeh H. G., Dhayalan V., Punniamoorthy R. and Meena S., (2019), Enhanced Photovoltaic Properties of Dye-Sensitized Solar Cells through Ammonium Hydroxide-Modified (Nitrogen-Doped) Titania Photoanodes. I. J. E. Res. 2023:12. https://doi.org/10.1155/2023/1090174
  4. Nguyen H. H., (2019) Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells. 1-19. DOI: 10.5772/intechopen.93637
  5. Larisa M. and Cristiana C., (2019), Aerogel, a high-performance material for thermal insulation - A brief overview of the building applications. E3S Web of Conf. 111. https://doi.org/10.1051/e3sconf/2019111060
  6. Luke J., Lina J. D., Omnia S., Muqoyyanah M., Suriani A. B., Muhammad D. B. and Amine El M., (2022), Hybrid Organic–Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization. Polym. 14: 1-27. https://doi.org/10.3390/polym14051059
  7. Atli A., Atilgan A. and Yildiz A., (2018), Multi-layered TiO2 photoanodes from different precursors of nanocrystals for dye-sensitized solar cells. Sol. E. 173: 752-758. https://doi.org/10.1016/j.solener.2018.08.027
  8. Sethu N. T. and Shanmugan S., (2024), Towards sustainable solar cells: unveiling the latest developments in bio-nano materials for enhanced DSSC efficiency. Clean Eny. 8: 238-257. https://doi.org/10.1093/ce/zkae031
  9. Samantha N., Edigar M., Moses A. O. and Vincent O. N., (2023), Tuning the Properties of Reduced Graphene Oxide Sr0.7Sm0.3Fe0.4Co0.6O3 Nanocomposites as Potential Photoanodes for Dye Sensitized Solar Cells. J. Ele. Mat. 52: 5843-5860. https://doi.org/10.1007/s11664-023-10526-3
  10. Aminah N.G., Otávio A. L. d. S., Layla H., Bianca P. B., Mohamed B. and Stefano B., (2022), Graphene Oxide (GO) Materials-Applications and Toxicity on Living Organisms and Environment. J. Func. Biomat. 13: 1-28. https://doi.org/10.3390/jfb13020077
  11. Savisha M., Foo W. L., Azimah O., Abreeza M., Nasrudin A. R., Chun H. T., Huda A., Chun H. V., Mamat R., Edy W. and Cheen S. O., (2022), Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye-sensitized solar cells: Recent advances and future outlook. I. J. E. R. 1-19. http://dx.doi.org/10.1002/er.7722
  12. Sai L. M. P., Alka. D. K. and Ushasri C., (2023), Various Extraction Techniques of Curcumin-A Comprehensive Review. ACSO mega 8: 34868-34878. https://doi.org/10.1021%2Facsomega.3c04205
  13. Ayoub. S. K., Fuad O. A. and Najat Z. M., (2024), Green Synthesis and Evaluation of ZnO NPs and study the effect of Their toxic on Honey Bee (Apis mellifera) Bag. S. J. 21: 2124-2136. https://doi.org/10.21123/bsj.2023.8664
  14. Yonggang H., Shenghua L., Leipeng L. and Xiang L., (2020), High-quality preparation of graphene oxide via the Hummers' method: Understanding the roles of the intercalator, oxidant, and graphite particle size. Cer. I. 46: 2392-2402. https://doi.org/10.1016/j.ceramint.2019.09.231
  15. Santamaría-Juárez G., Gómez-Barojas E., Quiroga-González E., Sánchez-Mora E., and Santamaría-Juárez J. D., (2019), Preparation and Characterization of Reduced Graphene Oxide/Titanium Dioxide Composites by Hydrothermal Method Eur. J. Eng. Res. and Sci. 4: 165-173. http://dx.doi.org/10.24018/ejers.2019.4.9.1364
  16. Sabah N. M., Alyaa H. A., Quraish A. K. and Neean F. M., (2020), Synthesis of Nano curcumin Via Sol-Gel / Ultrasonic Processors Route and Improving their properties by Microwaves-Induced Plasma, J. Phy. 1660: 012042. http:// doi:10.1088/1742-6596/1660/1/012042
  17. Tian-Chiuan W., Wei-Ming H., Jenn-Kai T., Cheng-En C. and Teen-Hang M., (2024), Effect of Photoanode Process Sequence on Efficiency of Dye-Sensitized Solar Cells. Coat. 14: 1-11. https://doi.org/10.3390/coatings14030304
  18. Giphin G., Raja S. Y. and Anu M. E. (2020), Fabrication of Dye-Sensitized Solar Cells using natural flower dye extracts: A study on performance analysis and solar dye degradation. Eny. Sour. Part A: 1-15. https://doi.org/10.1080/15567036.2020.1796849
  19. Selva Esakki E., Sarathi R., Meenakshi S. S., Renuga D. L., (2020), Fabrication of Dye Sensitized Solar Cells using Ixora Macrothyrsa. Mat. Today: Proceedings. 47: 2182-2187. https://doi.org/10.1016/j.matpr.2021.05.672
  20. Kazi R. A., Ashaduzzaman Md., Shujit C. P., Mithun R. N., Snahasish B., Otun S., Mizanur R. Md., Shukanta B. and Tutu D. A., (2020), Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN App. Sci. 2: 955. https://doi.org/10.1007/s42452-020-2762-8
  21. Ashok K. K. V., Lakshminarayana B., Suryakalab D. and Subrahmanyam Ch., (2020), Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium. RSC Adv. 10: 20494. DOI: 10.1039/d0ra02062a rsc.li/rsc-advances
  22. Boukhoubza I., Khenfouch M., Achehboune M., Mothudi B. M., Zorkani I. and Jorio A., (2019), X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide. J. Phy. 1292. doi:10.1088/1742-6596/1292/1/012011
  23. Haotian B., Jingjing L., Jiahao Y., Zhongghao C., Wenjie W., Shiyu Z. and Peixi Z., (2024), Synthesis and characterization of zinc oxide-graphene oxide nanocomposites for electrocatalytic detection of rutin. Alex. Eng. J. 91: 486-493. https://doi.org/10.1016/j.aej.2024.02.018
  24. Issam B., Mohammed. K., Mohamed A., Liviu L., Aurelian C. G., Monika E., Aurelian C., Mohammed G., Bakang M. M., Anouar J. and Izeddine Z., (2020), Graphene Oxide Concentration Effect on the Optoelectronic Properties of ZnO/GO Nanocomposites. Nanomat. 10: 1532. http://dx.doi.org/10.3390/nano10081532
  25. Van-Duong D, (2016), Comment on “Energy storage via polyvinylidene fluoride dielectric on the counter electrode of dye-sensitized solar cells” J. P. Sour. 337: 125-129. http://dx.doi.org/10.1016/j.jpowsour.2013.09.094