10.57647/j.ijnd.2025.1604.27

Elucidating the structural, optical, and magnetic properties of tin-doped manganese Sulphide (TMS) nanomaterials

  1. Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
  2. Department of Physics, Aditanar College of Arts and Science, Tiruchendur, Tamilnadu, India
  3. PG and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi, Tenkasi, Tamilnadu, India
Elucidating the structural, optical, and magnetic properties of tin-doped manganese Sulphide (TMS) nanomaterials

Received: 2025-02-11

Revised: 2025-04-28

Accepted: 2025-05-03

Published in Issue 2025-05-17

How to Cite

Krishnasamy, J., Palanisamy, S., & Subbaiah Chelladurai, V. D. (2025). Elucidating the structural, optical, and magnetic properties of tin-doped manganese Sulphide (TMS) nanomaterials. International Journal of Nano Dimension, 16(4 (October 2025). https://doi.org/10.57647/j.ijnd.2025.1604.27

PDF views: 166

Abstract

Tin-doped Manganese Sulphide (TMS) was created by utilizing green synthesis with grape juice. The prepared TMS nanomaterial underwent examinations with the X Ray Diffraction (XRD), UV-visible spectral (UV), Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), High Resolution Transmission Electron Microscope (HRTEM), Selected Area Electron Diffraction (SAED), Energy Dispersive Spectroscopic (EDS), and Vibrating Sample Magnetometer (VSM) techniques. The TMS material's structure was discovered by the XRD method to have a cubic structure, and the sample's particle size was calculated to be 22.651 nm. According to a SEM analysis, the sample contains particles that are somewhat agglomerated and have the shape of flowers. It has been determined from HRTEM and SAED tests that the nanoparticle is a single crystal. The EDS method was used to identify elements like Mn, S, and Sn. The band gap of TMS nanomaterial is estimated to be 3.42 eV by UV-visible spectral analysis and AFM investigation provides 2-d and 3-d pictures of the sample. According to VSM characterization, TMS nanomaterial is a type of paramagnetic material. The results of research using FTIR, thermal, fluorescence, cyclic voltammetry, and impedance to characterize tin-doped MnS (TMS) nanomaterial are evaluated.

Keywords

  • Antibacterial activity,
  • Impedance,
  • Microscopy,
  • MnS,
  • Sn- doped,
  • Spectroscopy,
  • VSM

References

  1. Chavda S., Limbasiya N., Vamja P., Vaishnani A., Vachhani K., Hirpara B., Kandoliya M., Gadani K., Dhruv D., Joshi A. D., Solanki P. S., Shah N. A., (2022), Studies on optical and electrical properties of CdO/Al2O3 composites. J. Sol-Gel Sci. Technol. 104: 169 -177. https://doi.org/10.1007/s10971-022-05921-x.
  2. Zankat A., Gadani K., Vadgama V., Udeshi B., Gal M., Solanki S, Vaishnani A., Shrimali V. G., Solanki P. S., Shah N.A., Pandya D.D., (2021), Frequency and temperature dependent electrical properties of ZnO–SnO2 nanocomposites. Physica B. 617: 413140. https://doi.org/10.1016/j.physb.2021.413140.
  3. Zankat A., Gadani K., Rajyaguru B., Shrimali V. G., Joseph J., Makwana H., Trivedi R. K., Solanki P. S., Shah N. A., Pandya D. D., (2021), Structural and electrical properties of sol–gel grown (1 − x) (ZnO) + (x) (SnO2) (x = 0, 0.25, 0.5) nanocomposites. J. Sol-Gel Sci. Technol. 99: 198 – 210. https://doi.org/10.1007/s10971-021-05544-8.
  4. Sadeghi B., Ghammamy Sh., Gholipour Z., Ghorchibeigy M., Amini Nia A., (2011), Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell. Micro Nano Lett. 6: 209-213. https://doi.org/10.1049/mnl.2011.0036.
  5. Amininia A., Pourshamsian K., Sadeghi B., (2020), Nano-ZnO Impregnated on Starch—A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents. Russ. J. Org. Chem. 56: 1279-1288, https://doi.org/10.1134/S1070428020070234.
  6. Hebalkar N., Lobo A., Sainkar S. R., Pradhan S. D., Vogel W., Urban J., Kulkarni S. K., (2001), Properties of zinc sulphide nanoparticles stabilized in silica. J. Mater. Sci. 36: 4377-4384. https://doi.org/10.1023/A:1017910131081.
  7. Rashmi Saragur N., Chandrashekar Hosur K., Sangamesha Madanahalli A., (2024), Surface, structural and optical investigation on Poly Vinyl Alcohol (PVA)/Bi2WO6 nanocomposite films. Int. J. Nano Dimens. 13: 267-281. https://doi.org/10.22034/ijnd.2022.1946867.2109.
  8. Sadeghi B., Ghammami S., (2005), Oxidation of Alcohols with Tetramethylammonium Fluorochromate in Aceticoi Acid. Russ. J. Gen. Chem. 75: 1886-1888. https://doi.org/10.1007/s11176-006-0008-0.
  9. Wang Q., Xu Y., Zhao X., Chang Y., Liu Y., Jiang L., Sharma J., Seo D. K., Yan H., (2007), Facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J. Am. Chem. Soc. 129(20): 6380-6381. https://doi.org/10.1021/ja071434y.
  10. Joo J. H., Na B., Yu T., Yu J. H., Kim Y. W., Wu F., Zhang J. Z., Hyeon T., (2003), Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125: 11100-11105. https://doi.org/10.1021/ja0357902.
  11. Puglisi A., Mondini S., Cenedese S., Ferretti A. M., Santo N., Ponti A., (2010), Monodisperse Octahedral α-MnS and MnO Nanoparticles by the Decomposition of Manganese Oleate in the Presence of Sulfur. Chem. Mater. 22: 2804-2813. https://doi.org/10.1021/cm903735e.
  12. Tian Q., Tang M., Jiang F., Liu Y, Wu J., Zou R., Sun Y., Chen Z., Li R., Hu J., (2011), Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem. Commun. 47: 8100-8102. https://doi.org/10.1039/C1CC11621E.
  13. Wang D. S., Zheng W., Hao C. H., Peng Q., Li Y. D., (2009), A Synthetic Method for Transition‐Metal Chalcogenide Nanocrystals. Chem. Eur. J. 15: 1870-1875. https://doi.org/10.1002/chem.200801815.
  14. Weller H., (1993), Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5: 88–95. https://doi.org/10.1002/adma.19930050204.
  15. Kumar A., Jakhmola A., Chaudhary V., (2009), Synthesis and photophysics of colloidal ZnS/PbS/ZnS nanocomposites—An analysis of dynamics of charge carriers. J. Photochem. Photobiol. A. 208: 195–202. https://doi.org/10.1016/j.jphotochem.2009.09.015.
  16. Wang D., Cao Y., Zhang X., Qian X., Ai X., Liu Z., Liu F., Wang D., Bai Y., Li T., Tang X., (1999), Synthesis and characteristics of ZnS/CdS composite nanocrystals in block copolymer micelle. J. Mater. Res. 14: 2381–2384. https://doi.org/10.1557/JMR.1999.0319.
  17. Kanabar N., Gadani K., Shrimali V. G., Sagapariya K., Rathod K. N., Udeshi B., Joseph J., Pandya D. D., Solanki P. S., Shah N. A., (2021), Structural and electrical properties of sol–gel grown nanostructured ZnO and LaMnO3 particle-based nanocomposites. Appl. Phys. A. 127: 122. https://doi.org/10.1007/s00339-020-04243-5.
  18. Lagariya M., Modi M., Dadhich H., Gal M., Gadani K., Solanki P. S., Shah N.A., (2020), Studies on structural and electrical behaviors of chemically grown ZnO/SnO2 nanocomposites. Physica B. 577: 411774. https://doi.org/10.1016/j.physb.2019.411774.
  19. Zheng J., Ji W., Wang X., Ikezawa M., Jing P., Liu X., Li H., Zhao J., Masumoto J., (2010), Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell. J. Phys. Chem. C. 114: 15331-15336. https://doi.org/10.1021/jp104513k.
  20. Sadjadi M. S., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X=F (1), X=Cl (2). J. Mol. Struct. THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015.
  21. Ammulu M. A., Viswanath K. V., Giduturi A. K., Vemuri P. K., Mangamuri U., Poda S., (2021), Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox. b heartwood extract and its biomedical applications. J. Genet. Eng. Biotechnol. 19: 1-18. https://doi.org/10.1186/s43141-021-00119-0.
  22. Abinaya S., Helen P. K., (2023), Magnesium Oxide Nanoparticles: Effective Antilarvicidal and Antibacterial Agents. ACS Omega. 8: 5225-5233. https://doi.org/10.1021/acsomega.2c01450.
  23. Abdulaziz M. A., Paul D. M., Firoz A., Inigo J. V., George F. S. W., Floriana T., Paul O., David D., David J. L., (2021), Structural Investigations of α-MnS Nanocrystals and Thin Films Synthesized from Manganese (II) Xanthates by Hot Injection, Solvent-Less Thermolysis, and Doctor Blade Routes. ACS Omega. 6: 27716-27725. https://doi.org/10.1021/acsomega.1c02907.
  24. Mazhar T., (2024), Bio-assisted synthesis of bi-metallic (Ag-Zn) nanoparticles by leaf extract of Azadirachta indica and its antimicrobial properties. Int. J. Nano Dimens. 13: 168-178. https://doi.org/10.22034/ijnd.2022.686558.
  25. Beiranvand M., Ajerloo B., Mohammadi A., (2024), Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles by using grapes fruit extract and study of antibacterial and catalytic effects. Int. J. Nano Dimens. 8: 49 - 60. https://doi.org/10.22034/ijnd.2017.24376.
  26. Yamamoto M., Kashiwagi Y., Sakata T., Mori H., Nakamoto M., (2005), Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chem. Mater., 17: 5391–5393. https://doi.org/10.1021/cm0515000.
  27. Ballarin B., Cassani M. C., Tonelli D., Boanini E., Albonetti S., Blosi M., Gazzano M., (2010), Gold Nanoparticle-Containing Membranes from in Situ Reduction of a Gold (III)−Aminoethylimidazolium Aurate Salt. J. Phys. Chem. C. 114: 9693–9701. https://doi.org/10.1021/jp1024262.
  28. Zardkhoshoui A. M., Ameri B., Davarani S. S. H., (2021), α-MnS@Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors. Chem. Eng. J. 422: 129953. https://doi.org/10.1016/j.cej.2021.129953.
  29. Roberto B., Gian Bartolo P., Luigi R., (2022), AFM Measurements and Tip Characterization of Nanoparticles with Different Shapes. Nanomanuf. Metrol. 5: 127 – 138. https://doi.org/10.1007/s41871-022-00125-x.
  30. Lacava L. M., Lacava B. M., Azevedo R. B., Lacava Z. G. M., Buske N., Tronconi A. L., Morais P.C., (2001), Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance. J. Mag. Mat. 225: 79-83. https://doi.org/10.1016/S0304-8853(00)01231-2.
  31. Daniel J. M., Andra C. D., Cristina L. G., Hermann E. G., Peter H., Gerhard H., James J. D. Y., Yves F. D., David A., (2021), Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem. Rev. 121: 11701-11725. https://doi.org/10.1021/acs.chemrev.0c00617.
  32. Zhang C., Yi Z., Xu W., (2022), Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials. Mater. Futures. 1: 032301. https://doi.org/10.1088/2752-5724/ac8a63.
  33. Park S. J., Park H. H., Kim S. Y., Kim S. J., Woo K, Ko G. P., (2014), Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 80: 2343-2350. https://doi.org/10.1128/AEM.03427-13.
  34. Hashem A. H., Saied E., Amin B. H., Alotibi F. O., Al-Askar A. A., Arishi A. A., Elkady F. M., Elbahnasawy M. A., (2022), Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J. Funct. Biomater. 13: 242. https://doi.org/10.3390/jfb13040242.
  35. Brandelli A., (2024), Nanocomposites and their application in antimicrobial packing. Front. Chem. 12. https://doi.org/10.3389/fchem.2024.1356204.
  36. Karuppusamy S., Muralidharan S., Dinesh B. K., Sakthivel P., Dongjin C., (2023), Thermal, dielectric, mechanical and structural behavior of 2-amino 4-methylpyridinium 4-nitrophenolate 4-nitrophenol bulk single crystal. Heliyon. 9: e18260. https://doi.org/10.1016/j.heliyon.2023.e18260.
  37. Steven T. N., Kevin J. R., Toshiko I., Xiaojun L., (2023), Characterization of Mass Transfer within the Crystal-Solution Boundary Layer of l-Alanine {120} Faces Using Laser Interferometry during Growth and Dissolution. Cryst. Growth Des. 23: 2755-2769. https://doi.org/10.1021/acs.cgd.2c01541.
  38. Raja C. R., Gokila G., Joseph A. A., (2009), Growth and spectroscopic characterization of a new organic nonlinear optical crystal: L-Alaninium succinate. Spectrochim. Acta, Part A. 72: 753-756. https://doi.org/10.1016/j.saa.2008.11.030.
  39. Pei L., Xiao J., Menglin H., Lei K., Shiyou C., Adam G., Bing H., (2022), Defect engineering of second-harmonic generation in nonlinear optical semiconductors. Cell Rep. Phys. Sci. 3: 101111. https://doi.org/10.1016/j.xcrp.2022.101111.
  40. Shanthi D., Selvarajan P., Perumal S., (2016), Linear optical constants and photoluminescence characteristics of beta-alaninium picrate (BAP) crystals. Optik. 127: 3192-3199. https://doi.org/10.1016/j.ijleo.2015.11.189.
  41. Aly K. A., (2022), Comment on the relationship between electrical and optical conductivity used in several recent papers published in the journal of materials science: materials in electronics. J. Mater. Sci: Mater. Electron. 33: 2889-2898. https://doi.org/10.1007/s10854-021-07496-9.
  42. Zhar M., Nowsherwan G. A., Iqbal M. A., Ikram S., Butt A. F., Khan M., Ahmad N., Hussain S. S., Raza M. A., Choi J. R., Riaz S., Naseem S.. (2023), Morphological, Photoluminescence, and Electrical Measurements of Rare-Earth Metal-Doped Cadmium Sulfide Thin Films. ACS Omega. 8: 36321-36332. https://doi.org/10.1021/acsomega.3c04936.
  43. Zlatic G., Arapovic A., Martinovic I., Martinovic Bevanda A., Boskovic P., Prkic A., Paut A., Vukusic T., (2022), Antioxidant Capacity of Herzegovinian Wildflowers Evaluated by UV–VIS and Cyclic Voltammetry Analysis. Molecules, 27: 5466. https://doi.org/10.3390/molecules27175466.
  44. Singh S., Narasimhappa P., Khan N. A., Chauhan V., Shehata N., Behera S. K., Singh J., Ramamurthy P. C., (2023), Effective voltammetric tool for Nano-detection of triazine herbicide (1-Chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) by naphthalene derivative. Environ. Res. 236: 116808. https://doi.org/10.1016/j.envres.2023.116808.
  45. Da Silva G. F., Martini S, Moraes J. C. B., Teles L. K., (2021), AC impedance spectroscopy (AC-IS) analysis to characterize the effect of nanomaterials in cement-based mortars. Construct. Build. Mater. 269: 121260. https://doi.org/10.1016/j.conbuildmat.2020.121260.
  46. Deep M., Chandra Bhal S., Akhilesh Kumar S., (2024), Synthesis and characterization of BaTi1−xNbxO3 ferroelectric perovskite oxides with tunable band gap, anomalous photovoltage, and enhanced energy storage, J. Mater. Sci.: Mater. Electron. 35: 912. https://doi.org/10.1007/s10854-024-12636-y.
  47. Balgovind T., Babu T., Choudhary R. N. P., (2020), AC Impedance and Modulus Spectroscopic Studies of Pb(Zr0.35-xCexTi0.65) O3 (x = 0.00, 0.05, 0.10, 0.15) Ferroelectric Ceramics. Mater. Chem. Phys. 256: 123655. https://doi.org/10.1016/j.matchemphys.2020.123655.
  48. Foner S., (1996), The vibrating sample magnetometer: Experiences of a volunteer. J. Appl. Phys. 79: 4740-4745. https://doi.org/10.1063/1.361657.