Feature-driven fruit classification using leveraging machine learning algorithms and nano semiconductor sensors
- Koneru Lakshmaiah Education Foundation Vaddeswaram, Guntur, AP, India
- Vellore Institute of Technology Chennai, Vandalur, Tamil Nadu, India
- National Institute of Technology Tiruchirappalli, Tamil Nadu, India
- Lendi Institute of Engineering and Technology, Vizianagaram, AP, India
Received: 2025-01-30
Revised: 0025-02-03
Accepted: 2025-05-02
Published in Issue 2025-05-17
Copyright (c) -1 Venkateswarlu Gundu, Krishna Kumba, Sishaj P Simon, Parusharamulu Buduma, Mithu Sarkar (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 149
Abstract
The proposed work compares machine learning algorithms for fruit classification using apples, mandarins, oranges, and lemons. The goal is to identify the most accurate and precision-score algorithm. To assemble a robust dataset, we purchased several dozen oranges, lemons, and apples of various subtypes and meticulously recorded their mass, width, height, and color score using nano semiconductor sensors. Using this recorded data statistical analysis is conducted for identifying the accurate fruit classification machine learning method. The accurate prediction rate is determined by subtracting the actual and anticipated values. K-Nearest Neighbors (KNN) shows superior performance, achieving accuracies of 0.989, 0981 and 0.979 on training, validation and testing sets. The performance of the KNN algorithm combined with the W-H-CS feature combination technique is highly dependent on the choice of k and relevance of the selected features.
Keywords
- Classification algorithms,
- Nano-scale Feature Detection,
- Machine learning algorithms and statistical analysis,
- Nano-enabled Image Sensors,
- Nano semiconductor sensors
References
- Shahi TB, Sitaula C, Neupane A, Guo W, (2022), Fruit classification using attention-based MobileNetV2 for industrial applications.17(2). https://doi.org/10.1371/journal.pone.0264586.
- Zhou XX, Li YY, Luo YK, Sun YW, Su YJ, Tan CW, Liu YJ, (2022), Research on remote sensing classification of fruit trees based on Sentinel-2 multitemporal imageries. Scientific Reports. 12(1):11549. DOI: 10.1038/s41598-022-15782-0.
- Zhang YD, Dong Z, Chen X, Jia W, Du S, Muhammad K, Wang SH, (2019), Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications. 78:3613-32. DOI: 10.1007/s11042-018-6556-1.
- Bird JJ, Barnes CM, Manso LJ, Ek´art A, Faria DR, (2022). Fruit quality and defect image classification with conditional GAN data augmentation. Scientia Horticulturae. 5; 293: 110684. DOI: 10.1016/j.scienta.2022.110684.
- Wang H, Xing C, Yin J, Yang J, (2022) Land Cover Classification for Polarimetric SAR Images Based on Vision Transformer. Remote Sensing.14(18):4656. DOI: 10.3390/rs14184656.
- Elango S, Haldar D, Danodia A, (2022), Discrimination of maize crop in a mixed Kharif crop scenario with synergism of multiparametric SAR and optical data. Geocarto International. 37(18):5307-26. DOI: 10.1080/10106049.2021.1927329.
- Imani M, (2022) Scattering and contextual features fusion using a complex multi-scale decomposition for polarimetric SAR image classification. Geocarto International. 1-26. DOI: 10.1080/10106049.2022.2061935.
- Lottes P, Behley J, Milioto A, Stachniss C, (2018), Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters. 3(4):2870-7. DOI: 10.1109/LRA.2018.2846641.
- Sa I, Chen Z, Popovi´c M, Khanna R, Liebisch F, Nieto J, Siegwart R., (2017), weednet: Dense semantic weed classification using multispectral images and mav for smart farming. IEEE robotics and automation letters.3(1):588-95. DOI: 10.1109/LRA.2017.2778106.
- Berenstein R, Edan Y, (2017), Automatic adjustable spraying device for sitespecific agricultural application. IEEE Transactions on Automation Science and Engineering. 15(2):641-50. DOI: 10.1109/TASE.2016.2636130.
- Surucu S, Ecemis, (2023), Classification of Urban Waste Materials with Deep Learning Architectures. SN Computer Science. 4(3): 285. DOI https://doi.org/10.1007/s42979-023-01706-3
- Bargoti S, Underwood JP, (2017), Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics. 34(6): 1039-1060. DOI: 10.1002/rob.21709.
- Nath RK, Thapliyal H, Humble TS, (2021), A review of machine learning classification using quantum annealing for real-world applications. SN Computer science. 2:1-1. DOI: 10.1007/s42979-020-00502-0.
- Abokaff LM, (2022), Classification of Breast Cancer Diagnosis Systems Using Artificial Intelligence Techniques: Survey. SN Computer Science. 3(5):368. DOI: 10.1007/s42979-022-01179-9.
- Wang T, Anwer RM, Cholakkal H, Khan FS, Pang Y, Shao L, (2019), Learning rich features at high-speed for single-shot object detection. InProceedings of the IEEE/CVF international conference on computer vision.1971-1980. DOI: 10.1109/ICCV.2019.00206.
- Kang H, Chen C, (2020), Fast implementation of real-time fruit detection in apple orchards using deep learning. Computers and Electronics in Agriculture. 168:105108. DOI: 10.1016/j.compag.2019.105108.
- Koirala A, Walsh KB, Wang Z, McCarthy C., (2019), Deep learning for realtime fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’. Precision Agriculture. 20:1107-35. DOI: 10.1007/s11119-019-09647-z.
- Kateb FA, Monowar MM, Hamid M, Ohi AQ, Mridha MF, (2021), FruitDet: Attentive feature aggregation for real-time fruit detection in orchards. Agronomy.11(12):2440. DOI: 10.3390/agronomy11122440. DOI: 10.3390/agronomy11122440.
- Wan S, Goudos S, (2020), Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks. 168:107036. DOI: 10.1016/j.comnet.2019.107036.
- Kirk R, Cielniak G, Mangan M, (2020), L* a* b* fruits: A rapid and robust outdoor fruit detection system combining bio-inspired features with onestage deep learning networks. Sensors. 20(1):275. DOI: 10.3390/s20010275.
- Zhang YD, Dong Z, Chen X, Jia W, Du S, Muhammad K, Wang SH, (2019) Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications. 78:3613-32. DOI: 10.1007/s11042-018-6556-1.
- Nasiri A, Taheri-Garavand A, Zhang YD, (2019), Image-based deep learning automated sorting of date fruit. Postharvest biology and technology.153:133-41. DOI: 10.1016/j.postharvbio.2019.03.006.
- Chiesa G, Di Vita D, Ghadirzadeh A, Herrera AH, Rodriguez JC, (2020), A fuzzy-logic IoT lighting and shading control system for smart buildings. Automation in construction. 120:103397. DOI: 10.1016/j.autcon.2020.103397.
- Munir MS, Bajwa IS, Cheema SM, (2019), An intelligent and secure smart watering system using fuzzy logic and blockchain. Computers & Electrical Engineering. 77:109-19. DOI: 10.1016/j.compeleceng.2019.04.008.
- Ogaili, Ahmed Ali Farhan, Mohsin Noori Hamzah, Alaa Abdulhady Jaber, (2022), Integration of Machine Learning (ML) and Finite Element Analysis (FEA) for Predicting the Failure Modes of a Small Horizontal Composite Blade." International Journal of Renewable Energy Research (IJRER) 12(4),2168-2179. https://doi.org/10.20508/ijrer.v12i4.13354.g8589.
- Al-Haddad, L.A., Jaber, A.A, (2023), Improved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking method. J Braz. Soc. Mech. Sci. Eng. 45, 463. https://doi.org/10.1007/s40430-023-04386-5. DOI: 10.1007/s40430-023-04386-5.
- Blasco, J., Aleixos, N., Moltó, E, (2009), Machine vision system for automatic quality grading of fruit. Biosystems Engineering, 103(1): 29-39. DOI: 10.1016/j.biosystemseng.2009.02.001.
- Mureșan, H., Oltean, M, (2018), Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, 10(1): 26-42. DOI: 10.2478/ausi-2018-0002.
10.57647/j.ijnd.2025.1604.26
