10.57647/j.ijc.2025.1501.01

An Overview of Thermocatalyst Technology in Air Pollution Control: Narrative Review

  1. Department of Occupational Health and safety Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
  2. Student Research Committee and Department of Occupational Health and Safety Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
An Overview of Thermocatalyst Technology in Air Pollution Control: Narrative Review

Received: 2024-08-29

Revised: 2024-12-30

Accepted: 2025-02-24

Published 2025-03-02

How to Cite

Rismanchian, M., Barakat, S., Saber, E., & Shafiei Alavijeh, M. (2025). An Overview of Thermocatalyst Technology in Air Pollution Control: Narrative Review. Iranian Journal of Catalysis, 15(1 (March 2025). https://doi.org/10.57647/j.ijc.2025.1501.01

PDF views: 54

Abstract

Air pollution represents a global challenge with significant adverse impacts on human health and the environment. In recent years, modern technologies have received considerable attention for their potential in controlling air pollution. This study provides a comprehensive review of various thermocatalytic technologies employed to mitigate air pollution. Data were collected from a wide range of online scientific literature sources, including databases such as ISI Web of Science, Scopus, Medline (via PubMed), Science Direct, and Google Scholar. Specific keywords related to thermocatalysts, air purification, air pollution, gaseous purification, gaseous pollution, and thermal catalysts were utilized in the search strategy. In thermocatalytic processes, the Mars−van Krevelen (MVK), Eley-Rideal (E–R), and Langmuir−Hinshelwood (L−H) mechanisms play crucial roles. Thermocatalysts demonstrate high efficiency in the removal and reduction of air pollutants. The primary challenges in applying these catalysts include their thermal energy activation and high manufacturing costs. Consequently, ongoing research focuses on reducing energy consumption, lowering production costs, and enhancing catalyst performance in pollutant removal, all of which are conducted at the laboratory scale. To this end, it is recommended that future research prioritize the design and development of optimized thermocatalysts to meet industry needs.

Research Highlights

  • The requirement for UV-Vis exposure in the process of photocatalytic degradation imposes constraints on the feasibility and ecological advantages of this method.
  • The degradation of contaminants through thermal catalysis without light exposure has garnered attention due to its benefits including reduced energy and chemical consumption.
  • These thermocatalysts can eliminate a wide range of air pollutants.
  • All these studies have been conducted in laboratory settings, it is recommended that future research prioritize the design of optimal thermocatalysts.

Keywords

  • Air Pollution,
  • Thermocatalys,
  • Thermal catalyst,
  • Temperature,
  • Volatile Organic Compounds (VOCs)

References

  1. R. Ma, J. Sun, D.H. Li, J.J. Wei, Int. J. Hydrogen Energy. 45 (2020) 30288-30324. DOI: https://doi.org/10.1016/j.ijhydene.2020.08.127.
  2. Y. Ergashev, E. Egamberdiev, D. Mirkhodjaeva, G. Akmalova, M. Umarova, R. Kholdarov, E3S Web of Conferences, EDP Sciences, 2023, pp. 01012. DOI: https://doi.org/10.1051/e3sconf/202337101012.
  3. E. Rokni, A. Panahi, X. Ren, Y.A. Levendis, Fuel. 181 (2016) 772-784. DOI: https://doi.org/10.1016/j.fuel.2016.05.023.
  4. C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev. 119 (2019) 4471-4568. DOI: https://doi.org/10.1021/acs.chemrev.8b00408.
  5. X. Bi, S. Liang, X. Li, Environ. Pollut. 177 (2013) 48-57. DOI: https://doi.org/10.1016/j.envpol.2013.01.045.
  6. O. Kurmi, P.R. Regmi, P.R. Pant, Nepal J. Epidemiol. 6 (2016) 525. DOI: https://doi: 10.3126/nje.v6i1.14733.
  7. A. Shahzad, Z.U.A. Sabiha, M. Haq, H. Ullah, M.H. Zafar, S. Khalid, Pol. J. Environ. Stud. 30 (2021) 833. DOI: https://doi.org/10.15244/pjoes/122502.
  8. J.H. Martínez-Montelongo, I.E. Medina-Ramírez, Y. Romo-Lozano, J.A. Zapien, Chemosphere. 257 (2020) 127236. DOI: https://doi.org/10.1016/j.chemosphere.2020.127236.
  9. Ö. Şengören Dikiş, T. Yildiz, S. Us Dulger, C. Yuksel Kacan, M.A. Haberal, T. Cetin, The Aging Male. 23 (2020) 934-940. DOI: https://doi.org/10.1080/13685538.2019.1635579.
  10. S. Ruiz, A. Arruti, I. Fernández-Olmo, J. Irabien, Procedia Environ. Sci. 4 (2011) 76-86. DOI: https://doi.org/10.1016/j.proenv.2011.03.010.
  11. Z. Chen, M.T. Salam, S.P. Eckel, C.V. Breton, F.D. Gilliland, J. Thorac. Dis. 7 (2015) 46. DOI: https://doi.org/10.3978/j.issn.2072-1439.2014.12.20.
  12. M. Simoni, S. Baldacci, S. Maio, S. Cerrai, G. Sarno, G. Viegi, J. Thorac. Dis. 7 (2015) 34. DOI: https://doi.org/10.3978/j.issn.2072-1439.2014.12.10.
  13. H. Merzenich, N. Riccetti, B. Hoffmann, M. Blettner, F. Forastiere, E. Gianicolo, Int. J. Hyg. Environ. Health. 231 (2021) 113649. DOI: https://doi.org/10.1016/j.ijheh.2020.113649.
  14. P.S. Nimlyat, M.Z. Kandar, Sustain. Cities Soc. 17 (2015) 61-68. DOI: https://doi.org/10.1016/j.scs.2015.04.002.
  15. G. Swamy, Heliyon. 7 (2021). DOI: https://doi.org/10.1016/j.heliyon.2021.e08153.
  16. C. Jj, Y. Huang, Q. Zhang, Catalysts. 11 (11): 1276, 2021. DOI: https://doi.org/10.3390/catal11111276.
  17. J.-S. Jung, J.-G. Kim, J. Electrost. 86 (2017) 12-17. DOI: https://doi.org/10.1016/j.elstat.2016.12.011.
  18. H. Xu, W. Jin, J. Luo, F. Wang, H. Zhu, G. Liu, Y. Yu, C. Lei, Y. Guo, Process Saf. Environ. Prot. 151 (2021) 28-38. DOI: https://doi.org/10.1016/j.psep.2021.05.007.
  19. A.H. Mamaghani, F. Haghighat, C.-S. Lee, Appl. Catal., B. 203 (2017) 247-269. DOI: https://doi.org/10.1016/j.apcatb.2016.10.037.
  20. J. Roegiers, S. Denys, Chem. Eng. J. 417 (2021) 128109. DOI: https://doi.org/10.1016/j.cej.2020.128109.
  21. M. Yu, S. Zeng, Y. Nie, X. Zhang, S. Zhang, Curr. Opin. Green Sustainable Chem. 27 (2021) 100405. DOI: https://doi.org/10.1016/j.cogsc.2020.100405.
  22. S. Luo, X. Ren, H. Lin, H. Song, J. Ye, Chem. Sci. 12 (2021) 5701-5719. DOI: https://doi.org/10.1039/D1SC00064K.
  23. Y. Lou, J. Xu, Y. Zhang, C. Pan, Y. Dong, Y. Zhu, Mater. Today Nano. 12 (2020) 100093. DOI: https://doi.org/10.1016/j.mtnano.2020.100093.
  24. Z. Zhu, W. Guo, Y. Zhang, C. Pan, J. Xu, Y. Zhu, Y. Lou, Carbon Energy. 3 (2021) 519-540. DOI: https://doi.org/10.1002/cey2.127.
  25. K. Vellingiri, K. Vikrant, V. Kumar, K.-H. Kim, Chem. Eng. J. 399 (2020) 125759. DOI: https://doi.org/10.1016/j.cej.2020.125759.
  26. M. Hadian, K. Buist, H. Kuipers, Curr. Opin. Chem. Eng. 42 (2023) 100968. DOI: https://doi.org/10.1016/j.coche.2023.100968.
  27. M.E. Awual, M.S. Salman, M.M. Hasan, M.N. Hasan, K.T. Kubra, M.C. Sheikh, A.I. Rasee, A.I. Rehan, R. Waliullah, M.S. Hossain, J. Ind. Eng. Chem. 131 (2024) 585-592. DOI: https://doi.org/10.1016/j.jiec.2023.10.062.
  28. J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, J. Gong, Chem. 2 (2017) 877-892. DOI: http://dx.doi.org/10.1016/j.chempr.2017.05.006.
  29. J. Li, X. Lv, B. Weng, M.B. Roeffaers, H. Jia, Chem. Eng. J. 461 (2023) 142022. DOI: https://doi.org/10.1016/j.cej.2023.142022.
  30. L. Wei, C. Yu, K. Yang, Q. Fan, H. Ji, Chin. J. Catal. 42 (2021) 1078-1095. DOI: https://doi.org/10.1016/S1872-2067(20)63721-4.
  31. P. Wu, X. Luo, S. Zhang, K. Li, F. Qi, Appl. Catal., A. 497 (2015) 216-224. DOI: https://doi.org/10.1016/j.apcata.2015.02.032.
  32. Y. Hu, X. Wan, S. Tie, S. Lan, X. Gao, J. Solid State Chem. 298 (2021) 122107. DOI: https://doi.org/10.1016/j.jssc.2021.122107.
  33. C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li, J. Xiao, Chem. Eng. J. 370 (2019) 1128-1153. DOI: https://doi.org/10.1016/j.cej.2019.03.232.
  34. Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today. 264 (2016) 270-278. DOI: https://doi.org/10.1016/j.cattod.2015.10.040.
  35. X. Wang, P. Sun, Z. Zhao, Y. Liu, S. Zhou, P. Yang, Y. Dong, Nanomaterials. 14 (2024) 611. DOI: https://doi.org/10.3390/nano14070611.
  36. M. Šťastný, V. Štengl, J. Henych, J. Tolasz, M. Kormunda, J. Ederer, G. Issa, P. Janoš, RSC Adv. 10 (2020) 19542-19552. DOI: https://doi.org/10.1039/D0RA00944J.
  37. X. Gong, R. Zhao, J. Qin, H. Wang, D. Wang, Chem. Eng. J. 358 (2019) 291-298. DOI: https://doi.org/10.1016/j.cej.2018.09.222.
  38. Y. Zhang, M. Chen, Z. Zhang, Z. Jiang, W. Shangguan, H. Einaga, Catal. Today. 327 (2019) 323-333. DOI: https://doi.org/10.1016/j.cattod.2018.04.027.
  39. H. Guo, Z. Zhang, H. Hojo, M. Chen, H. Einaga, W. Shangguan, Catal. Surv. Asia. 23 (2019) 199-209. DOI: https://doi.org/10.1007/s10563-019-09268-2.
  40. H. Liu, Y. Li, Y. Yang, M. Mao, M. Zeng, L. Lan, L. Yun, X. Zhao, J. Mater. Chem. A. 4 (2016) 9890-9899. DOI: https://doi.org/10.1039/C6TA03181A.
  41. M. Xu, J.A. Lopez-Ruiz, N.W. Riedel, R.S. Weber, M.E. Bowden, L. Kovarik, C. Jiang, J. Hu, R.A. Dagle, Catal. Sci. Technol. 13 (2023) 3231-3244. DOI: https://doi.org/10.1039/D2CY01782B.
  42. J.-M. Kim, K. Vikrant, T. Kim, K.-H. Kim, F. Dong, Chem. Eng. J. 428 (2022) 131090. DOI: https://doi.org/10.1016/j.cej.2021.131090.
  43. Y. Ma, G. Zhang, Chem. Eng. J. 288 (2016) 70-78. DOI: https://doi.org/10.1016/j.cej.2015.11.077.
  44. T. Yang, Y. Huo, Y. Liu, Z. Rui, H. Ji, Appl. Catal., B. 200 (2017) 543-551. DOI: https://doi.org/10.1016/j.apcatb.2016.07.041.
  45. S. Ratnayake, M. Mantilaka, C. Sandaruwan, D. Dahanayake, Y.P. Gunasekara, S. Jeyasakthy, N. Gurusinghe, U. Wanninayake, K.N. de Silva, J. Rare Earths. 39 (2021) 67-74. DOI: https://doi.org/10.1016/j.jre.2020.02.013.
  46. U. Ashik, W.W. Daud, H.F. Abbas, Renewable Sustainable Energy Rev. 44 (2015) 221-256. DOI: https://doi.org/10.1016/j.rser.2014.12.025.
  47. V. Yadav, M.J. Al-Marri, M.A. Saad, A. Kumar, Emergent Mater. 7 (2024) 1-16. DOI: https://doi.org/10.1007/s42247-023-00606-9.
  48. Y. Gao, Y. Guo, Y. Zou, W. Liu, Y. Luo, B. Liu, C. Zhao, ACS Appl. Energy Mater. 6 (2023) 1340-1354. DOI: https://doi.org/10.1021/acsaem.2c03131
  49. D. Sahoo, S. Senapati, S. Samal, S. Varadharajaperumal, R. Naik, ACS Appl. Eng. Mater. 1 (2023) 1001-1012. DOI: https://doi.org/10.1021/acsaenm.2c00269.
  50. X. Xiao, G. Zhang, Z. Wang, Y. Zhu, Z. Yan, Y. Wang, J. Alloys Compd. 908 (2022) 164624. DOI: https://doi.org/10.1016/j.jallcom.2022.164624.
  51. K. Srilatha, D. Bhagawan, S.S. Kumar, V. Himabindu, S. Afr. J. Chem. Eng. 24 (2017) 156-167. DOI: https://doi.org/10.1016/j.sajce.2017.10.002.
  52. X. He, F. Dong, W. Han, Z. Tang, Y. Ding, J. Mater. Chem. A. 12 (2024) 7470-7507. DOI: https://doi.org/10.1039/D3TA07590G.
  53. Y. Li, S. Han, L. Zhang, Y. Yu, Trans. Tianjin Univ. (2021) 1-14. DOI: https://doi.org/10.1007/s12209-021-00308-5.
  54. P. Wu, X. Jin, Y. Qiu, D. Ye, Environ. Sci. Technol. 55 (2021) 4268-4286. DOI: https://doi.org/10.1021/acs.est.0c08179.
  55. Z. Zhao, S. Ma, B. Gao, F. Bi, R. Qiao, Y. Yang, M. Wu, X. Zhang, Sep. Purif. Technol. 314 (2023) 123510. DOI: https://doi.org/10.1016/j.seppur.2023.123510.
  56. X. Li, Y. Niu, H. Su, Y. Qi, Catal. Lett. 152 (2022) 1801-1818. DOI: https://doi.org/10.1007/s10562-021-03770-x.
  57. F. Zhang, Y. Zhu, Q. Lin, L. Zhang, X. Zhang, H. Wang, Energy Environ. Sci. 14 (2021) 2954-3009. DOI: https://doi.org/10.1039/D1EE00247C.
  58. S. Qiu, Y. Wu, Y. Tan, Q. Dai, X. Gao, S. Kawi, ChemCatChem. 15 (2023) e202300420. DOI: https://doi.org/10.1002/cctc.202300420.
  59. K. Vikrant, S. Weon, K.-H. Kim, M. Sillanpää, Appl. Mater. Today. 23 (2021) 100993. DOI: https://doi.org/10.1016/j.apmt.2021.100993.
  60. J. Guo, C. Lin, C. Jiang, P. Zhang, Appl. Surf. Sci. 475 (2019) 237-255. DOI: https://doi.org/10.1016/j.apsusc.2018.12.238.
  61. Y. Hua, Y. Ahmadi, K.H. Kim, Adv. Sci. 10 (2023) 2300079. DOI: https://doi.org/10.1002/advs.202300079.
  62. R. Li, Y. Huang, D. Zhu, W. Ho, S. Lee, J. Cao, Aerosol Sci. Eng. 4 (2020) 147-168. DOI: https://doi.org/10.1007/s41810-020-00065-3.
  63. A. Yusuf, C. Snape, J. He, H. Xu, C. Liu, M. Zhao, G.Z. Chen, B. Tang, C. Wang, J. Wang, Catal. Rev. 59 (2017) 189-233. DOI: https://doi.org/10.1080/01614940.2017.1342476.
  64. W. Zhang, D. Ma, J. Pérez-Ramírez, Z. Chen, Adv. Energy Sustainability Res. 3 (2022) 2100169. DOI: https://doi.org/10.1002/aesr.202100169.
  65. H. Huang, Y. Xu, Q. Feng, D.Y. Leung, Catal. Sci. Technol. 5 (2015) 2649-2669. DOI: https://doi.org/10.1039/C4CY01733A.
  66. I.R. Hamdani, A. Ahmad, H.M. Chulliyil, C. Srinivasakannan, A.A. Shoaibi, M.M. Hossain, ACS omega. 8 (2023) 28945-28967. DOI: https://doi.org/10.1021/acsomega.3c01936.
  67. S. Shirvani, M. Ghashghaee, K.J. Smith, Catal. Rev. 65 (2023) 1-51. DOI: https://doi.org/10.1080/01614940.2021.1899605.
  68. Y. LI ZH, Z. LI ZS, Sol. RRL. 5 (2021) 2000596. DOI: https://doi.org/10.1002/solr.202000596.
  69. J. Ye, M. Zhou, Y. Le, B. Cheng, J. Yu, Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature, Applied Catalysis B: Environmental, 267 (2020) 118689.
  70. S. Huang, X. Zhu, B. Cheng, J. Yu, C. Jiang, Environ. Sci.:Nano. 4 (2017) 2215-2224. DOI: DOI https://doi.org/10.1039/C7EN00603A.
  71. Y. Huang, W. Fan, B. Long, H. Li, W. Qiu, F. Zhao, Y. Tong, H. Ji, J. Mater. Chem. 4 (2016) 3648-3654. DOI: https://doi.org/10.1039/C5TA09370H.
  72. Z. Wang, J. Pei, J. Zhang, Build. Sci. 65 (2013) 49-57. DOI: https://doi.org/10.1016/j.buildenv.2013.03.007.
  73. Y. Huang, K. Ye, H. Li, W. Fan, F. Zhao, Y. Zhang, H. Ji, Nano Res. 9 (2016) 3881-3892. DOI: https://doi.org/10.1007/s12274-016-1257-9.
  74. A. Lejeune, A. Cabrol, R. Lebullenger, A. Denicourt-Nowicki, A. Roucoux, A. Couvert, P.-F. Biard, Ind. Eng. Chem. Res. 59 (2020) 14758-14766. DOI: https://doi.org/10.1021/acs.iecr.0c02447.
  75. R. Rostami, A. Jonidi Jafari, J. Environ. Health Sci. Eng. 12 (2014) 1-10. DOI: https://doi.org/10.1186/2052-336X-12-89.
  76. S. Song, X. Wu, C. Lu, M. Wen, Z. Le, S. Jiang, Appl. Surf. Sci. 442 (2018) 195-203. DOI: https://doi.org/10.1016/j.apsusc.2018.02.121.
  77. A.I. Alharthi, M.A. Alotaibi, A.M. Alansi, T.F. Qahtan, I. Ali, M.N. Al-Shalwi, M.A. Bakht, Mater. 16 (2023) 2835. DOI: https://doi.org/10.3390/ma16072835.
  78. H. Lin, Q. Zhang, H. Liu, S. Shen, Z. Guo, B. Jin, R. Peng, Mater. Adv. 4 (2023) 2332-2339. DOI: https://doi.org/10.1039/D2MA01038K.
  79. S.-Y. Wu, R.-R. Yan, L. Xiao, J. Cleaner Prod. 374 (2022) 134065. DOI: https://doi.org/10.1016/j.jclepro.2022.134065.
  80. Y. Yang, Y. Li, M. Mao, M. Zeng, X. Zhao, ACS Appl. Mater. Interfaces. 9 (2017) 2350-2357. DOI: https://doi.org/10.1021/acsami.6b12819.
  81. W. Tang, Y. Yao, X. Huang, Catalysts. 12 (2021) 29. DOI: https://doi.org/10.3390/catal12010029.
  82. L.O. Paulista, A.F. Ferreira, B. Castanheira, M.B. Ðolić, R.J. Martins, R.A. Boaventura, V.J. Vilar, T.F. Silva, Appl. Catal., B. 340 (2024) 123232. DOI: https://doi.org/10.1016/j.apcatb.2023.123232.
  83. R. Fiorenza, R.A. Farina, E.M. Malannata, F. Lo Presti, S.A. Balsamo, Catalysts. 12 (2022) 85. DOI: https://doi.org/10.3390/catal12010085.
  84. H. Chen, J. Ku, L. Wang, Chin. J. Catal. 40 (2019) 1117-1134. DOI: https://doi.org/10.1016/S1872-2067(19)63366-8.
  85. B. Bai, J. Li, ACS Catal. 4 (2014) 2753-2762. DOI: https://doi.org/10.1021/cs5006663.
  86. X. Zha, C. Yang, X. Huang, J. Ding, Z. Ding, Environ. Pollut. Bioavailability. 36 (2024) 2376827. DOI: https://doi.org/10.1080/26395940.2024.2376827.
  87. Y. Guo, M. Wen, G. Li, T. An, Appl. Catal., B. 281 (2021) 119447. DOI: https://doi.org/10.1016/j.apcatb.2020.119447.
  88. H. Chen, Q. Wu, Y. Wang, Q. Zhao, X. Ai, Y. Shen, X. Zou, Chem. Commun. 58 (2022) 7730-7740. DOI: https://doi.org/10.1039/D2CC02299K.
  89. R. Li, Y. Huang, D. Zhu, W. Ho, S. Lee, J. Cao, Aerosol Sci Eng. 4 (2020) 147-168. DOI: https://doi.org/10.1007/s41810-020-00065-3.
  90. M. Zhang, G. Li, Q. Li, J. Chen, E.A. Elimian, H. Jia, H. He, Environ. Sci. Technol. 57 (2023) 4286-4297. DOI: https://doi.org/10.1021/acs.est.2c09136.
  91. H. Liu, Y. Li, Y. Yang, M. Mao, M. Zeng, L. Lan, L. Yun, X. Zhao, J. Mater. Chem. A. 4 (2016) 9890-9899. DOI: https://doi.org/10.1039/C6TA03181A.
  92. M. Hadian, K. Buist, A. Bos, J. Kuipers, Chem. Eng. J. 421 (2021) 129759. DOI: https://doi.org/10.1016/j.cej.2021.129759.
  93. J. González-Martín, N.J.R. Kraakman, C. Pérez, R. Lebrero, R. Muñoz, Chemosphere. 262 (2021) 128376. DOI: https://doi.org/10.1016/j.chemosphere.2020.128376.
  94. M.N. Hasan, M.S. Salman, M.M. Hasan, K.T. Kubra, M.C. Sheikh, A.I. Rehan, A.I. Rasee, M.E. Awual, R. Waliullah, M.S. Hossain, J. Mol. Struct. 1276 (2023) 134795. DOI: https://doi.org/10.1016/j.molstruc.2022.134795.
  95. M.S. Salman, M.C. Sheikh, M.M. Hasan, M.N. Hasan, K.T. Kubra, A.I. Rehan, M.E. Awual, A.I. Rasee, R. Waliullah, M.S. Hossain, Appl. Surf. Sci. 622 (2023) 157008. DOI: https://doi.org/10.1016/j.apsusc.2023.157008.
  96. B. Wang, Z. Song, L. Sun, Chem. Eng. J. 409 (2021) 128136. DOI: https://doi.org/10.1016/j.cej.2020.128136.
  97. H. Zhang, Z. Wang, L. Wei, Y. Liu, H. Dai, J. Deng, Chin. J. Catal. 61 (2024) 71-96. DOI: https://doi.org/10.1016/S1872-2067(24)60043-4.
  98. A. Alcasabas, P.R. Ellis, I. Malone, G. Williams, C. Zalitis, Johnson Matthey Technol. Rev. 65 (2021) 180-196. DOI: https://doi.org/10.1595/205651321X16081175586719.
  99. S. Feng, J. Liu, B. Gao, L. Bo, L. Cao, J. Environ. Chem. Eng. 9 (2021) 105105. DOI: https://doi.org/10.1016/j.jece.2021.105105.